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ABSTRACT K-Nearest Neighbor (kNN)-based deep learning methods have been applied to many appli-
cations due to their simplicity and geometric interpretability. However, the robustness of kNN-based deep
classification models has not been thoroughly explored and kNN attack strategies are underdeveloped. In this
paper, we first propose an Adversarial Soft kNN (ASK) loss for developing more effective kNN-based
deep neural network attack strategies and designing better defense methods against them. Our ASK loss
provides a differentiable surrogate of the expected kNN classification error. It is also interpretable as it
preserves the mutual information between the perturbed input and the in-class-reference data. We use
the ASK loss to design a novel attack method called the ASK-Attack (ASK-Atk), which shows superior
attack efficiency and accuracy degradation relative to previous kNN attacks on hidden layers. We then
derive an ASK-Defense (ASK-Def) method that optimizes the worst-case ASK training loss. Experiments
on CIFAR-10 (ImageNet) show that (i) ASK-Atk achieves ≥ 13% (≥ 13%) improvement in attack
success rate over previous kNN attacks, and (ii) ASK-Def outperforms the conventional adversarial training
method by ≥ 6.9% (≥ 3.5%) in terms of robustness improvement. Relevant codes are available at
https://github.com/wangren09/ASK.

15 INDEX TERMS Deep learning, K-nearest neighbor, adversarial soft kNN, ASK-attack, ASK-defense.

I. INTRODUCTION16

The K-Nearest Neighbor (kNN) classifier is a simple pro-17

totype classification algorithm that has been widely used in18

classification tasks [1], [2], [3]. Combined with deep neural19

networks (DNNs), kNN has also been successfully applied20

to a broad range of important learning tasks, e.g., Remote21

Sensing Image Retrieval [4], machine translation [5], speaker22

verification [6], and face recognition [7]. Nonetheless, DNN23

classifiers have been found to be vulnerable against adver-24

sarial attacks [8], [9], which generate small perturbations25

The associate editor coordinating the review of this manuscript and

approving it for publication was Donatella Darsena .

on benign examples to flip class predictions. Although 26

researchers have recently demonstrated that kNN-based deep 27

learning methods are effective in defending against adver- 28

sarial attacks on DNNs [10], [11], and can be used in more 29

general data quality testing applications [12], as compared 30

to DNN’s, the intrinsic adversarial robustness of kNN-based 31

deep classifiers has been less well explored. 32

Previously proposed strategies for evaluating kNN-based 33

deep learning methods on image classification tasks include: 34

the Deep kNN attack (DkNN-Atk), which is based on 35

a heuristic process to approximate the kNN [13]; and 36

the adversarial KNN attack (AdvKnn) [14], which uses 37

a neural network to approximate the kNN distribution. 38
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As shown in Figure 1, neither work particularly well39

on the CIFAR-10 DNN model trained by the adversarial40

training (AT) [15].41

In this paper, we develop a more effective optimization-42

based attack strategy on kNN-type deep classifiers using a43

novel loss function, called the Adversarial Soft kNN (ASK)44

loss. ASK loss better approximates the kNN’s probability45

of classification error as compared to the previously intro-46

duced loss functions. We show that the ASK loss is bounded47

by an information-theoretic measure: a mutual information48

measure between the perturbed input and benign examples,49

providing intuition for attack power transfer and the ability to50

defend against hidden-layer attacks. As our major contribu-51

tion, we develop a more effective attack on kNN-based deep52

classifiers, called the ASK-Attack (ASK-Atk), that maxi-53

mizes the ASK loss. When applied to the kNN on DNN54

structures, our proposed ASK-attack targets its hidden layers.55

Therefore, ASK-attack can also be leveraged to evaluate the56

robustness of features extracted in a hidden layer.57

We then derive a more robust defense against kNN-based58

attacks on hidden layers, called theASK-Defense (ASK-Def),59

that minimizes the maximum ASK in the robust training pro-60

cess. Previous robust training methods have largely focused61

on robustifying DNN prediction [15], [16]. To the best of our62

knowledge, the proposed ASK-defense is the first method63

to defend against kNN attacks on hidden layers of DNNs64

via robust training. The left and right panels of Figure 165

demonstrates the effectiveness of both the proposedASK-Atk66

and ASK-Def methods, respectively. Importantly, ASK-Def67

achieves an average 7% robustness with training complexity68

comparable to conventional adversarial training.69

A. CONTRIBUTIONS70

Our principal contributions are the following:71

• A novel Adversarial Soft kNN (ASK) loss is introduced72

that approximates the kNN’s probability of classi-73

fication error in the adversarial setting, and estab-74

lish that it guides the design of effective attack and75

defense strategies through the perspective of preserving76

mutual information between the perturbed input and the77

in-class-reference data.78

• A new attack strategy, the ASK-Attack (ASK-Atk),79

is presented that maximizes the ASK loss. ASK-Attack80

provides a principled and effective way to evaluate the81

robustness of kNN-based deep learning methods in both82

white-box and gray-box settings, and can be leveraged83

to evaluate the robustness of features extracted in a84

hidden layer. On CIFAR-10 and Imagenette we show85

that the proposedASK-Atk improves on the kNN attacks86

of [13] and [14]: ASK-Atk achieves ≥ 13% additional87

degradation in accuracy rates.88

• A new defense strategy, the ASK-Defense (ASK-Def),89

is presented to robustify model weights under vari-90

ous kNN-based attacks targetting hidden layers through91

minimizing the maximum ASK loss. On CIFAR-1092

(Imagenette) the proposed defense improves the robust- 93

ness of the DkNN over conventional adversarial train- 94

ing [15] by ≥ 6.9% (≥ 3.5%) on the single selected 95

layers and 4.8% (1.3%) on the combined layers. 96

B. BACKGROUND AND COMPARISONS 97

Non-parametric methods like kNN have been widely applied 98

to different tasks, e.g., neural language models [5], [6] and 99

the reasoning task of correspondence classification [17]. 100

Recently, kNN has received renewed attention for its potential 101

to improve robustness. In [18] the authors proposed a robust 102

1-NN classifier that removes a subset corresponding to the 103

oppositely labeled nearby points in the training data. Multi- 104

layer kNN’s [10], [11] provide robust classification against 105

adversarial attacks on DNNs. The baseline method we use to 106

evaluate the ASK-Atk and ASK-Def is the Deep k-Nearest 107

Neighbor (DkNN) [10]. In a DkNN the kNN classifier is 108

embedded into selected layers of a DNN, producing an output 109

class decision by majority vote among the kNN classifiers: 110

yDkNN = argmax
c

∑
l∈L

pcl (x), c ∈ [C], (1) 111

where l is the l-th layer of a DNN and L is the set of the 112

selected layers. Here pcl (x) is the confidence score assigned 113

to class c predicted by the kNN in layer l for input x. [C] 114

denotes the set {1, 2, · · · ,C}, where C is the number of 115

classes. Recent work shows that the DkNN can also be used 116

to remove the mislabeled training data [12]. 117

While robustness of kNN-based deep classifiers against 118

a wide range of adversarial attacks has been established, 119

their robustness against customized attacks is less well stud- 120

ied. Originally designed with cosine similarity, the DkNN 121

attack (DkNN-Atk) attempts to reduce robustness by moving 122

examples towards incorrect classes through some heuristic 123

steps [13]. Another attack, AdvKnn, trains a small neural 124

network, called the deep kNN block, to approximate the 125

kNN classifier and uses it to construct the attack [14]. Our 126

ASK loss framework for designing adversarial attacks estab- 127

lishes a much stronger attack, the ASK-Atk, than these previ- 128

ous attacks. This is illustrated for the DkNN/VGG16 model 129

trained on the CIFAR-10 training set in the left panel of 130

Figure 1. The results also demonstrate that the ASK loss 131

can well approximate the kNN’s probability of classification 132

error. One recent work [19] has studied a similar form of loss 133

for representation learning with random minibatch selection. 134

However, the loss is based on pairwise similarity measure- 135

ment on a single layer and does not consider the adversarial 136

setting. In contrast, the ASK loss is a class-wise loss under 137

the adversarial setting and has a more general extension with 138

a weighted summation of different layers.Moreover, the ASK 139

loss provides interpretability of effective attack in white-box 140

and gray-box settings. The form of ASK loss can be com- 141

pared with contrastive loss functions, which has often been 142

used in self-supervised representation learning, e.g., for data 143

augmentation by applying operations like cropping, resizing, 144

or rotation [20], [21]. This paper is the first to propose a loss 145
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FIGURE 1. Proposed attack (ASK-Atk on left panel) and proposed defense (ASK-Def on right panel) outperform previous methods in terms of impact on
accuracy. All accuracy curves correspond to attacks or defenses on the base classifier, a Deep k-Nearest Neighbor (DkNN) [10], with VGG16 CNN
architecture, trained on CIFAR-10. Left: ASK-Atk achieves higher accuracy degradation (higher attack success rate) than the existing DkNN-Atk [13] and
AdvKnn [14] attacks on the adversarially trained [15] model. Right: Model trained using the proposed defense (ASK-Def) is more resilient to the ASK-Atk
than the adversarially trained baseline model for defending convolutional layer blocks 3 (Conv 3) and 4 (Conv 4) of VGG16. We refer readers to
Section VI and Appendix E, F to see more results of ASK-Atk and ASK-Def.

of such form (see (2)) in the supervised and adversarial DNN146

setting.147

Furthermore, as ASK-Atk is based on maximizing the148

ASK loss function, a stronger defense can be mounted by149

minimizing the maximum ASK loss during the training150

process, leading to the proposed ASK-Def. Unlike other151

robust training methods that defend the output layer of the152

DNN [15], [16], ASK-Def also defends kNN classifiers on153

hidden layers leading to improved robustness (right panel of154

Figure 1). In Figure 2 we illustrate the advantage of ASK-Atk155

and ASK-Def for one of the CIFAR-10 images contributing156

to the curves shown in Figure 1. For a clean example of157

class ‘‘truck,’’ the figure shows that (i) ASK-Atk success-158

fully attacks the example while the AdvKnn and DkNN-Atk159

fail, and (ii) the model using standard adversarial training160

fails to defend against ASK-Atk while the model trained by161

ASK-Def successfully defends against the attack.162

II. PRELIMINARY163

A. NOTATION164

We consider a DNN with weights θ , and denote θl as weights165

from layer 1 to layer l. fθl (·) : Rd
→ Rdl represents the166

mapping from the input to the l-th layer feature representa-167

tion. (x, y) represents a benign input-label pair. x′ = x + δ168

denotes the perturbed version of x. In the adversarial context,169

x′ is called an adversarial example that follows a target adver-170

sarial distribution. (X l+,Y l+) denotes a subset containing K171

data points selected from Dy (the training data of class y).172

Similarly, (X l−c ,Y l−c ) is the subset of the training data of173

class c, where c ∈ [C], and we denote the {X l−c }∀c∈[C],c6=y174

by X l−. We will call X l = {X l+,X l−} the reference data175

for x at the l-th layer, X l+ the in-class reference data, and176

X l− the out-of-class reference data. A(·, ·) is a similarity177

measurement between a data pair, and can be chosen from178

different similarity functions, e.g., cosine, inner-product, and179

(negative) `2 distance. Specifically, the cosine similarity is180

A(fθl ; x1, x2) = −
1
τl
cos

(
fθl (x1), fθl (x2)

)
, where τl denotes181

a positive (temperature) constant that rescales the similarity 182

of the data pair in the l-th layer. The negative `2 distance 183

similarity is also used in our experiments and is defined as: 184

A(fθl ; x1, x2) = −
1
τl
‖fθl (x1)− fθl (x2)‖. 185

B. ATTACKER’s KNOWLEDGE 186

We consider both a white-box and a gray-box setting for the 187

adversarial attack. In both settings, the adversary has knowl- 188

edge of the model parameters, similarity metric, and selected 189

subset of the training set used to perform the kNN search. 190

In the white-box setting, the adversary also knows the layers 191

used for kNN searching and the number of nearest neighbors 192

K . In the gray-box setting, either the layer information or the 193

number K is not available to the attacker. We will focus on 194

the `∞ attack. 195

C. DEFENDER’s CAPABILITIES 196

In our setting, the model trainer is the defender who only has 197

access to the training process while having no control of the 198

model during the inference phase. 199

III. ADVERSARIAL SOFT kNN (ASK) LOSS 200

In this section, we will propose a loss that will be used to 201

design effective attacks and defenses on kNN-based deep 202

classifiers. The weights of DNNs are most commonly trained 203

using gradient descent methods. Such methods require a 204

smooth (differentiable or sub-differentiable) network archi- 205

tecture, as a function of the DNN weights, in addition to 206

a smooth loss function. However, neural nets incorporating 207

kNN’s are not differentiable as the kNN mapping is not a 208

smooth function of its inputs. Besides overcoming the non- 209

differentiability challenge, we also hope the attack can work 210

well when the kNN implementation layers and K of the 211

kNN-DNN hybrid system are unknown to attackers, i.e., 212

under our gray-box setting. As for the defense, it needs to 213

be effective in facing kNN-based attacks on deep classifiers. 214

Spurred by these challenges, our design of the loss function 215
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FIGURE 2. Representative example showing superiority of proposed ASK attack (ASK-Atk) and ASK defense (ASK-Def) as compared to
previous attack strategies (DkNN-Atk and Adv-Knn). When the DkNN/VGG16 predictor is trained with standard adversarial training [15] on
CIFAR-10, for equal perturbation ε, ASK-Atk (2nd row) is more successful then other attacks (3rd and 4th row). Ask-Atk maximizes the
proposed ASK loss, and its perturbation of the truck image (top left) flips the classes of 4 out of 5 of the image’s nearest neighbors. When
DkNN/VGG16 is trained with Ask-Def, which minimizes the maximum ASK loss, it successfully defends against all 3 attacks. In particular,
the ASK-Atk can only flip the class of a single nearest neighbor (5th row).

is guided by three principles: (1) The loss should provide a216

differentiable surrogate of the expected kNN classification217

error, and thus makes it easy to evaluate its robustness. (2)218

The loss should enable attack power transfer across layers219

and various choices of K in our gray-box setting (without220

knowing the exact layers of implementing kNN and exact221

K ). (3) The loss needs to improve model robustness against222

different attacks on hidden layers.223

A. ASK LOSS224

We introduce a simple and differentiable Adversarial Soft225

kNN (ASK) loss, which is a function of the kNN classifier226

only through the kNN distances. For perturbed input x′, the227

ASK loss on layer l is defined as228

L lask(θl; x
′,X l)229

= −E(X l ,x′)230

×
[
log

S(fθl ; x
′,X l+)

S(fθl ; x′,X l+)+
∑C

c=1,c6=y S(fθl ; x′,X
l−
c )
] ,231

(2)232

where S(fθl ; x
′,X ) is a similarity measure between x′ and233

the data samples X on layer l. fθl acts on both x′ and234

X . We consider two specifications of S(·, ·): (i) S(·, ·) =235

exp
( 1
K

∑K
k=1 A(·, ·)

)
in our attack (the ASK-Attack Section);236

and (ii) S(·, ·) =
∑K

k=1 exp
(
A(·, ·)

)
in our defense (the ASK-237

Defense Section). Note that (2) is still well definedwhen there238

is no DNN, i.e, fθl is an identity map.239

B. INFORMATION-THEORETIC INTERPRETATION OF ASK 240

LOSS 241

The ASK loss (2) can be defined at any layer l and is closely 242

related to the mutual information between X l+ and the per- 243

turbed input x′. Specifically, the following proposition shows 244

that the negative ASK loss −L lask lower bounds the mutual 245

informationMI(X l+, x′) up to an additive constant log(C−1). 246

Proposition 1: For perturbed input x′ that follows a target 247

distribution, 248

MI(X l+, x′) ≥ −L lask + log(C − 1) (3) 249

The proof is given in Appendix A, which follows a similar 250

line of argument to that used in infoNCE [22]. One can also 251

check that the ASK losses under two forms of S(·, ·) (used 252

for design of the attack and the defense) lower bound the 253

mutual information. In practice, we would hope the encoding 254

network θl is deep enough in order to provide good feature 255

extraction. 256

Using kNN search, X l+ and X l− are the K closest data 257

points to the example x on layer l from each respective class. 258

The kNN classifier works well when the data points within 259

the same class are consistent and close to each other, while 260

data points from different classes are far apart. Proposition 1 261

makes it clear that the attacker and defender should take 262

different strategies. From the defender’s point of view, mini- 263

mizing L lask can enhance the model robustness by increasing 264

the mutual information between the perturbed input and the 265

in-class reference data, which helps defend against different 266

attacks on hidden layers without knowing the exact attack 267
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forms (principle (3)). In contrast, an attacker would want to268

minimize the mutual information to create maximum ambi-269

guity between the perturbed and unperturbed inputs which270

tends to make ASK loss large when there are a large number271

C of classes. In particular, if the attacker can force the mutual272

information to zero, then L lask can’t be smaller than log(C−1).273

Proposition 1 also indicates that in the sense of minimizing274

the mutual information, the attack can be effective without275

knowing the exact layers of implementing kNN and exact276

K (principle (2)). Intuitively, minimizing (2) forces (x′,X l+)277

to be mapped close together, while forcing pairs (x′,X l−)278

further away in the embedding space induced by the l-th layer.279

The ASK loss has the interpretation as a temperature-scaled280

cross-entropy [23], which is a differentiable surrogate of the281

expected kNN classification error (principle (1)). We will282

consider two types of ASK loss in the following Sections:283

ASK loss obtained through locally searched reference data284

in the attack and ASK loss obtained through non-locally285

selected reference data with class constraints in our defense.286

IV. ASK-ATTACK287

The attacker’s goal is to find a small perturbation δ such288

that x′ = x + δ flips the kNN classifier prediction (at the289

input layer or at a deep layer). The strength of the attack δ is290

constrained to the `p ball: C = {δ | ‖δ‖p ≤ ε}.291

A. ATTACK STRATEGY292

The attacker’s goal is to push the perturbed input x′ away293

from the y classification region, i.e., the region in which294

the kNN classifier would correctly predict y, and move x′295

towards some data points from other classes.Motivated by the296

properties of the ASK loss discussed in the previous Section,297

we adopt a attack strategy that maximizes the weighted sum-298

mation of ASK losses, i.e., it solves the optimization problem299

argmaxδ∈C
∑

l∈L ωlL
l
ask, or more explicitly300

argmax
δ∈C

∑
l∈L
−ωl301

· log
S(fθl ; x+ δ,X

l+)

S(fθl ; x+ δ,X l+)+
∑C

c=1,c6=y S(fθl ; x+ δ,X
l−
c )

, (4)302

where S(fθl ; x+δ,X ) = exp 1
K

∑K
k=1 A(fθl ; x+ δ,X ). ωl is a303

weighting coefficient applied to layer l, and
∑

l∈L ωl = 1.304

Note that (4) corresponds to a non-targeted attack. For a305

targeted attack the strategy is to move an example x + δ306

to a target class ct that is different from class y. For the307

targeted attack we replace
∑C

c=1,c6=y S(fθl ; x + δ,X
l−
c ) with308

S(fθl ; x+ δ,X
l−
ct ). The target class can be randomly selected309

or pre-selected by calculating the average distance to x. In the310

sequel ASK-Atk will always denote the non-targeted attack,311

unless otherwise specified. Results for the targeted attack are312

presented in Appendix E. (4) can be efficiently solved using313

gradient ascent with projection, with iterations defined as314

x′←
∏

B(x′,ε)

[
x′ + κsign

(
∇x′

∑
l∈L

ωlL lask(θl, x
′,X l)

)]
(5)315

where
∏

is a projection operator, and B(x′, ε) represents 316

the projection set that satisfies the prior constraints on the 317

data domain (e.g., x′ ∈ [0, 255]d when x′ is an image 318

vector) and the `p ball constraint. κ is the step size. Note 319

that implementing the ASK-Atk on any layer and any K can 320

affect the mutual information between the perturbed input 321

and the in-class reference data. This enables the attack to 322

work in the gray-box setting. More details are included in 323

Section VI and Appendix B. Next we introduce important 324

parameter selection strategies and computational cost. 325

B. SELECTION OF X l+ AND X l−
326

The in-class reference points X l+ for x are selected by kNN 327

search for the K data points closest to x in class y. The out- 328

of-class reference points X l− for x are also selected using 329

kNN search, but possibly with a different value ofK . We con- 330

sider K to be the same by default. The exact kNN selection 331

improves upon an alternative random selection method to 332

constitute X l− presented in Appendix E. 333

C. SELECTION OF τl AND ωl 334

Attacker selection of the hyperparameter τl that scales 335

the similarity between the data pair is selected via cross- 336

validation, which only requires a one-time kNN search on a 337

small batch. We also use cross-validation to select ωl , which 338

controls the power of attacking layer l under the multi-layer 339

attack. This is discussed in more detail in the Section VI. 340

D. COMPUTATIONAL COST 341

During training the bottleneck for ASK-Atk is the kNN 342

search, which must be performed over all target samples 343

selected from the training set and requires on the order of 344

O(kn log n) computations. This is a fixed setup cost that can 345

be handled off-line by parallel or distributed computing, fast 346

approximate kNN approximation [24], [25]. After training, 347

the cost for on-line prediction is cheap, e.g., using a ball-tree 348

to perform kNN search is only of order O(k log n). τl and 349

ωl only requires a one-time kNN search on a small batch, 350

therefore has limited impact on the computational time. 351

V. ASK-DEFENSE 352

The proposed defense ASK-Def solves a minimax optimiza- 353

tion problem to robustify the DkNN against attacks and, 354

in particular, kNN-based attacks. ASK-Def is constructed in 355

two stages corresponding to adversarial examples generation 356

and model update, 357

argmin
θ

∑
(x,y)∈D

Lce(θ, xadv1, y) 358

+λ
∑
l∈L

L lask
(
θl, xadv2,X l

)
359

subject to xadv1, xadv2 := G1(x),G2(x), (6) 360

where Lce denotes the DNN cross-entropy loss. G1 and G2 361

denote adversarial attack generators discussed below. The 362

argminθ operation in (6) performs the update that integrates 363
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FIGURE 3. Conceptual diagram illustrating how proposed ASK-Def
defense strategy emulates ASK-Atk and improves robustness of both the
DNN and the DkNN. Left: A DNN binary classifier has equivalent
classification performance as a deeper kNN classifier but is locally more
complex (higher curvature decision boundary). Benign data points (red
class and green class) are well separated in the feature space. Middle:
The adversarial generator G2 generates an adversarial example that
crosses both decision boundaries leading to a classification error. Right:
Minimizing the ASK loss forces the adversarial example and the reference
data from class 1 to be closer to each other, resulting in locally smoothed
decision boundaries of the DkNN and DNN that increase attack
resiliency.

the DNN cross-entropy with the ASK loss, using a penalty364

parameter λ to control the balance between the two loss terms.365

In ASK-Def, we use S(fθl ; x
′,X lc) =

∑K
k=1 e

A(fθl ;x
′,X lc(k)) as366

the class similarity measure. Following the same practical367

way of dealing with the computational burden as in the near-368

est neighbor approximation work [19], we find {X l+,X l−}369

from a reference batch, which is obtained by non-local sam-370

pling with input label-aware class constraints.371

A. ADVERSARIAL GENERATORS G1,G2372

ASK-Def uses the adversarial generators G1,G2 that gener-373

ate attacks that seek to maximize two different losses374

(G1) xadv1 = x+ δ∗,375

δ∗ = argmax
δ∈C

Lce(θ, x+ δ, y),376

(G2) xadv2 = x+ δ∗(l),377

δ∗(l) = argmax
δ∈Ĉ

L lask (θl, x+ δ,X
l
⋃

X adv2), (7)378

whereX adv2 is the adversarial counterpart ofX l . G1 generates379

attacks that maximize the DNN cross-entropy loss, while G2380

generates attacks that maximize ASK loss. Thus ASK-Def381

reduces to conventional adversarial training (AT) [15] when382

λ = 0 in (6), while it reduces to hardening against the383

customized ASK-Atk attack when λ � 0. We could also set384

G1 to generate attacks by a variant of AT, e.g., TRADES [16].385

The pseudocode for the full ASK-Def procedure is given in386

Appendix C.387

B. UNIVERSAL ROBUSTNESS ENHANCEMENT388

Based on Proposition 1, minimizing the ASK loss improves389

the model robustness by increasing the mutual informa-390

tion between the perturbed input and the in-class reference391

data. This indicates that ASK-Def is able to increase the392

model resilience against different kNN-based attacks without393

knowing the exact attack forms. ASK-Def is also conceptu- 394

ally illustrated in Figure 3, in which we show how using G2 395

followed by minimizing the ASK loss term help smooth local 396

decision boundaries of DNN and (deep) kNN, increasing 397

resiliency to attack. 398

VI. EXPERIMENTAL RESULTS 399

We focus on image classification tasks using CIFAR-10 and 400

Imagenette (10 sub-classes of ImageNet) databases. VGG16 401

and ResNet18 are trained on CIFAR-10 and Imagenette, 402

respectively. More details on the use of these datasets and 403

models are given in Appendix D. The DkNN [10] is used for 404

illustration of the proposed ASK-Atk and ASK-Def methods. 405

We name the i-th convolutional layer block as Conv i. For 406

VGG16 (ResNet18), Conv 4 denotes the 10-th layer (13-th 407

layer). Conv 3 and Conv 4 are designated as targets. If not 408

otherwise specified, we use ε = 8 as the attack power in 409

evaluations, and use K = 5 nearest neighbors in the kNN. 410

We show results using 95% confidence intervals over 20 (10) 411

trials in ASK-Atk (ASK-Def) studies. 412

A. EMPIRICAL STUDY OF ASK-ATK 413

1) COMPARISONS WITH OTHER ATTACKS 414

We compare ASK-Atk with AdvKnn [14] and DkNN- 415

Atk [13] on the DkNN classifier [10]. AdvKnn and 416

DkNN-Atk are two state-of-art attacks on kNN-based deep 417

classifiers. We first apply different attacks on a CIFAR-10 418

model adversarially trained with ε = 4. We refer read- 419

ers to Appendix D for additional details about the attack 420

parameter settings. Performance comparisons are shown in 421

Table 1 demonstrating that ASK-Atk causes higher accu- 422

racy degradation than other attacks, for both cosine sim- 423

ilarity and `2 similarity measures used in the ASK loss 424

function (2). The left figure in Figure 1 demonstrates that 425

ASK-Atk outperforms other attacks for various attack power 426

ε. It shows almost a linear response on the ASK-Attack’s 427

accuracy degradation. The results are consistent with the 428

observations in Figure 2 in [15], demonstrating that increas- 429

ing the attack power can cause significant accuracy degra- 430

dation before pushing the robust accuracy to a close-to-zero 431

region. A similar comparison is conducted on an Imagenette 432

model adversarially trained with ε = 2. We compare ASK- 433

Atk with other attacks using ε = 4 and ε = 8, and present the 434

results in Table 2. The table shows that ASK-Atk is stronger 435

than the other attacks on Imagenette. The results on both 436

datasets show that the attack performance of ASK-Atk does 437

not decrease for the lower layers, unlike the other attacks. 438

The ASK-Atk under the targeted attack and random sampling 439

strategy are shown in Tables 9 and 10 in the Appendix and 440

demonstrate that ASK-Atk also has superior performance in 441

these settings. 442

2) EVALUATIONS ON DIFFERENT LAYER COMBINATIONS 443

We also show in Table 3 that ASK-Atk can evaluate fea- 444

ture robustness on different layer combinations. ASK-Atk 445
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TABLE 1. ASK-Attack (ASK-Atk) outperforms AdvKnn [14] and DkNN-Atk [13] on CIFAR-10. All the methods are applied on the same DNN model. kNN
attacks and DkNN are implemented on the same layers and use either the cosine similarity or `2 similarity in the ASK loss (2).

TABLE 2. ASK-Attack (ASK-Atk) outperforms AdvKnn [14] and DkNN-Atk [13] on Imagenette under ε = 8 and ε = 4. All indicated methods are applied to
the same DNN model. kNN attacks and DkNN attacks are implemented on the same layers.

retains good performance when number of layers increases446

to five.447

3) SENSITIVITY TO τl448

The temperature τl is selected using cross-validation on449

a small batch, as discussed in the ASK-Attack Section.450

We study the sensitivity of ASK-Atk to τl by fixing the451

number of nearest neighbors K to be the same in ASK-Atk452

and in DkNN, and study how τl affects the ASK-Atk per-453

formance under different values of K . τ4 = 0.03 is the454

optimal value on convolutional layer 4. According to the455

results shown in the left figure of Figure 4, varying K456

has only small impact on the performance of ASK-Atk457

when τ4 = 0.03. Increasing the temperature to τ4, the458

performance of ASK-Atk remains stable even as τ4 is459

increased by a factor of 10, 100, 1000 times the optimal460

τ4. Note that the performance improves as K increases461

when τ4 is sufficiently large. Though the performances of462

ASK-Atk under non-optimal τ4 are worse than the perfor-463

mance under optimal τ4, they are still better than AdvKnn and464

DkNN-Atk.465

4) SENSITIVITY TO THE NEAREST NEIGHBOR K466

We next fix τ4 and study the gray box threat model where467

the attacker has no information on the value of K used468

by DkNN. The right figure of Figure 4 shows the perfor-469

mance of ASK-Atk using different values of K . ASK-Atk470

performs well when the classifier’s K is less than or equal471

to the attacker’s K , and ASK-Atk performance can remain472

relatively good for larger values of the classifier’s K when473

the attackers value of K exceeds 2. Experimental results of474

larger variation of K (≥ 15) can be found in Table 11 in the475

Appendix.476

5) SENSITIVITY TO THE ATTACK IMPLEMENTATION LAYERS477

Here we conduct experiments on another gray-box setting478

where ASK-Atk is applied on different layers from the DkNN479

layers. We apply ASK-Atk on one of Conv 3, Conv 4, and480

Conv 3, 4 and also apply DkNN on the one of Conv 3, Conv 4, 481

and Conv 3, 4. Results of these nine combinations are shown 482

in Table 4. One can see that the ASK-Atk still works well 483

in these scenarios, although the optimal attack on a single 484

layer is still achieved when ASK-Atk is applied on the same 485

layer as DkNN. A good choice in the gray-box setting is 486

to attack multi-layer, e.g., Conv 3,4 in the example shown 487

in Table 4. 488

6) FAILURE CASES ANALYSIS 489

We compare all the attack failure cases and the success cases 490

under theASK-Atk from the quantitative perspective.Wefirst 491

calculate the prediction confidence scores of all the benign 492

examples using 50-Nearest Neighbor. We find that the pro- 493

portion of data points with a confidence score equalling one 494

is 86.89% for failure cases and 22.91% for success cases. 495

The proportion of data points with a confidence score larger 496

than 0.95 is 93.57% for failure cases and 33.88% for success 497

cases. These observations indicate that the failure cases are 498

generally more compact with their neighbors belonging to 499

ground truth classes and thus hard to attack. The analysis also 500

demonstrates that ASK-Atk can be leveraged to evaluate the 501

compactness and robustness of features extracted in hidden 502

layers. 503

7) ASK-ATK ON THE DATA SPACE 504

Although the ASK-Atk is designed to operate on inner 505

representations of a deep neural network, we demonstrate 506

that ASK-Atk performs well on the data space. We remark 507

that both CIFAR-10 and Imagenette have poor kNN clas- 508

sification accuracy in the data space. Therefore, we tested 509

ASK-Atk on the data space of MNIST [26] and Fashion- 510

MNIST [27]. The results are shown in Table 5. The standard 511

accuracy for MNIST dataset (Fashion-MNIST dataset) is 512

95.5% (82.3%) when K = 5 and 94% (85%) when K = 10. 513

On MNIST (Fashion-MNIST), ASK-Atk can achieve 25% 514

(40%) accuracy degradation under the `∞ norm constraint 515

with ε = 60. 516
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TABLE 3. ASK-Attack (ASK-Atk) retains good performance on different layer combinations. All the methods are applied on the same DNN model.
Experiments are conducted on CIFAR-10.

FIGURE 4. The ASK-Atk is robust to variations of hyperparameters τ4 and K . Left: Varying K has small impact
on the performance of ASK-Atk when τ4 = 0.03. The performance of ASK-Atk remains stable even as τ4 is
increased by a factor of 10,100,1000. Right: ASK-Atk performs well when the classifier’s K is less or equal to the
attacker’s K , and retains relatively good performance for larger classifier K when the attacker’s K exceeds 2.
More results can be found in Tables 11 and 12 in the Appendix.

TABLE 4. ASK-Atk is applied on different layers from the DkNN layers but can still cause high accuracy degradation (attack success rate). All the
methods are applied on the same DNN model. Experiments are conducted on CIFAR-10.

TABLE 5. Performance of ASK-Attack (ASK-Atk) on the data space using MNIST and Fashion-MNIST. The standard accuracy for MNIST dataset
(Fashion-MNIST dataset) is 95.5% (82.3%) when K = 5 and 94% (85%) when K = 10.

B. EMPIRICAL STUDY OF ASK-DEF517

1) IMPROVING DkNN ROBUSTNESS BY ASK-DEF518

We first implement the ASK-Atk as the evaluation method519

to test DkNN robustness on models trained by different520

robust training methods. To demonstrate the effectiveness521

of ASK-Def, we compare it to (i) using Adversarial Train-522

ing (AT) [15]; and (ii) AT [15]+ Soft Nearest Neighbor523

(SNN) [19], where SNN was proposed as a regularizer to524

improve feature representation andmodel generalization. The525

results are shown in Tables 6, which demonstrates that there526

is additional robustness brought on by the auxiliary ASK527

loss term. We empirically find that applying ASK loss on528

the Conv 4 is enough to robustify both Conv 3 and Conv529

4. One can see that the model trained by ASK-Def attains 530

the highest robust accuracy against ASK-Atk on the two 531

datasets across on different layers. Specifically, on CIFAR- 532

10/Imagenette, ASK-Def improves the robustness of DkNN 533

over AT (AT+SNN) by ≥ 6.9%/3.5% (≥ 1.9%/0.3%) 534

on single selected layer, and 4.8%/1.3% (4%/1.7%) on 535

combined layers. The right panel in Figure 1 demonstrates 536

that the model trained by ASK-Def has improved DkNN 537

robustness over that of the model trained by AT over a 538

range of attack power ε. We also demonstrate that the model 539

trained by ASK-Def improves robustness over a range of 540

values of K , see Figure 5 in the Appendix. Our theoreti- 541

cal analysis indicates that ASK-Def can improve universal 542
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TABLE 6. ASK-Defense (ASK-Def) outperforms Adversarial Training (AT) [15] and AT [15]+Soft Nearest Neighbor [19] (AT+SNN). The ASK-Def does a
better robustification of different layers under the cosine similarity using CIFAR-10 and Imagenette. We add ASK loss to convolutional layer 4.

TABLE 7. ASK-Defense (ASK-Def) outperforms Adversarial Training (AT) [15] and AT [15]+Soft Nearest Neighbor [19] (AT+SNN) in defending AdvkNN [14]
and DkNN-Atk [13]. We use cosine similarity and CIFAR-10.

TABLE 8. ASK-Defense (ASK-Def) improves DNN prediction robustness over Adversarial Training (AT) [15] and AT [15]+Soft Nearest Neighbor [19]
(AT+SNN) under different PGD attack power. Both CIFAR-10 and Imagenette are included.

robustness beyond ASK-Atk. We next conduct experiments543

on AdvKnn and DkNN-Atk. Table 7 shows that ASK-Def544

can defend against various attacks and outperforms AT and545

AT+SNN. Specifically, ASK-Def outperforms the AT+SSN546

(AT) by 12% (17%) under the AdvkNN (DkNN-Atk) on547

the convolutional layer 4. These results are comparable to548

the improvements shown in Table 6, and we believe the549

results in Table 7 are strong enough to show the addi-550

tional robustness brought on by the auxiliary ASK loss term.551

ASK-Def can also be combined with variants of adversar-552

ial training, e.g., TRADES [16]. Additional experimental553

results on comparing with TRADES are shown in Table 13554

in the Appendix. We choose TRADES because AT and555

TRADES are the two most widely used robust training meth-556

ods. Although ASK-Def can be combined with other variants557

of AT, we believe that current results are enough to show the558

effectiveness of our defense method.559

2) IMPROVING DNN ROBUSTNESS560

As illustrated in Section V, ASK-Def is able to improve the561

robustness of both DkNN and DNN at the same time. For the562

PGD attack, Table 8 shows that ASK-Def can improve DNN 563

robustness under different attack power levels, without appre- 564

ciable loss of standard accuracy. Compared the ε = 8 column 565

in Table 8with the results shown in Table 6 onConv 4, one can 566

see that the differences of robust accuracy values on CIFAR- 567

10/Imagenette for ASK-Def are 3.24%/0.7%, while the dif- 568

ferences of robust accuracy values for AT are 5.05%/7.1%, 569

indicating that the robust accuracy gap between DkNN and 570

DNN becomes smaller in the model trained by ASK-Def. 571

VII. CONCLUSION 572

We presented a novel attack and defense strategy for 573

kNN-based deep classifiers. These strategies both include our 574

proposed Adversarial Soft kNN (ASK) loss term, which we 575

demonstrated is a lower bound on the mutual information 576

between perturbed inputs and the in-class reference data. 577

Maximization of the ASK loss led to our proposed ASK- 578

Attack (ASK-Atk). Experiments show that ASK-Atk outper- 579

forms previous kNN-based attacks. A minimax optimization 580

strategy applied to the ASK loss was introduced leading to 581

our robust training method called ASK-Defense (ASK-Def). 582
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Experiments demonstrate that ASK-Def provides additional583

robustness for kNN-based deep classifiers compared to con-584

ventional adversarial training. ASK-Atk and ASK-Def are585

applicable to a wide array of non-parametric metric learning586

applications beyond the computer vision applications and587

kNN-DNN hybrid system developed here.588

APPENDIX A589

PROOF OF PROPOSITION 1590

Our proof follows the similar proof technique in [22].591

We will show that (i) the optimal similarity measurement592 [
S(fθl ; x

′,X lc)
]
opt is proportional to density ratio between the593

conditional distribution p(X lc|x
′) and themarginal distribution594

p(X lc), where X
l
c denotes the reference data from class c ∈595

[C] (ii) Minimizing the ASK loss maximizes a lower bound596

on the mutual information between the perturbed input and597

the in-class-reference data. Given a reference data set X l =598

{X l+,X l−c }, c ∈ [C]/y containing one in-class reference sam-599

ple from the distribution p(·|x′) and C − 1 out-of-class refer-600

ence samples from the distribution p(·), we optimize the ASK601

loss to correctly select the in-class reference sample out of the602

given set. In other words, the optimal probability for the ASK603

loss should imply the fact that X l+ comes from p(·|x′) and604

X l−c , c ∈ [C]/y come from p(·). We use P(X lc = l + |X l, x′i)605

to represent such probability. We then have Lemma 1 for the606

optimal choice of the similarity measurement S(fθl ; x
′,X lc)607

under the optimal probability by minimizing the ASK loss.608

609

Lemma 1:
[
S(fθl ; x

′,X lc)
]
opt ∝

P(X lc |x
′)

P(X lc)
.610

The proof details are shown as follows.611

Proof:
S(fθl ;x

′,X lc)

S(fθl ;x
′,X lc)+

∑C
i=1,i6=c S(fθl ;x

′,X li )
can be viewed as612

the prediction score of predicting X lc to belonging to the613

distribution p(·|x′). First, we calculate the optimal probability614

of P(X lc = l + |X l, x′). We have615

P(X lc = l + |X l, x′)616

=
p(X lc|x

′)
∏

i6=c p(X
l
i )

p(X lc|x′)
∏

i6=c p(X
l
i )+

∑
i6=c p(X

l
i |x
′)
∏

j6=i p(X
l
j )

617

=

p(X lc |x
′)

p(X lc)

p(X lc |x′)
p(X lc)

+
∑

i6=c
p(X li |x

′)
p(X li )

, (8)618

Compare the result of (8) with
S(fθl ;x

′,X lc)

S(fθl ;x
′,X lc)+

∑
i6=c S(fθl ;x

′,X li )
,619

the proof is done. �620

Leveraging Lemma 1, we provide the proof of Proposi-621

tion 1 below.622

Proof:623

L lask ≥ L lask (OPT )624

= −E(X l ,x′) (9)625

log

[
S(fθl ; x

′,X l+)

S(fθl ; x′,X l+)+
∑C

c=1,c6=y S(fθl ; x′,X
l−
c )

]
opt

626

(10)627

= −E(X l ,x′) log

p(X l+|x′)
p(X l+)

p(X l+|x′)
p(X l+) +

∑
c6=y

p(X l−c |x′)
p(X l−c )

(11) 628

= E(X l ,x′) log

1+ p(X l+)
p(X l+|x′)

∑
c6=y

p(X l−c |x
′)

p(X l−c )

 (12) 629

≈ E(X l ,x′) log
[
1+

p(X l+)
p(X l+|x′)

(C − 1)EX l−
p(X l−c |x

′)

p(X l−c )

]
630

(13) 631

= E(X l+,x′) log
[
1+

p(X l+)
p(X l+|x′)

(C − 1)
]

(14) 632

≥ E(X l+,x′) log(C − 1)
p(X l+)
p(X l+|x′)

(15) 633

= E(X l+,x′) log
p(X l+)p(x′)
p(X l+, x′)

+ log(C − 1) (16) 634

= −MI(X l+, x′)+ log(C − 1), (17) 635

� 636

where (9) holds because any loss value is larger or equal to 637

the optimal value. (11) comes from Lemma 1. For simplicity, 638

we only consider one data point from each class. (C−1) will 639

be replace by K (C − 1) if each class has K reference data. 640

(13) becomes more accurate when the number of classes or 641

number of reference data in each class increases. In practice, 642

the number of classes in most classification problems is large 643

enough for the approximation to work decently well. One can 644

also check that the ASK losses under two forms of S(·, ·) 645

(used for design of the attack and the defense) lower bound 646

the mutual information. They can be treated equivalent under 647

Proposition 1. 648

Algorithm 1 ASK-Atk
Require: Model weights before the target layer l, θl ; attack

steps s; step size κ; attack power ε; reference data points
X l .
Uniformly initialize δ from [−ε, ε], and x′[0] = x+ δ.
for j = 1, · · · , s do
x′[j] ← x′[j − 1] + κsign

(
∇x′

∑
l∈L ωlL

l
ask(θl, x

′[j −
1],X l)

)
.

x′[j]← Clip[0,1]
(
x′[j]

)
.

x′[j]← x′[j]+ Clip[−ε,ε](δ).
end for
Output: x.

APPENDIX B 649

ALGORITHM FOR ASK-ATK 650

We formulate ASK-Atk as an optimization problem 651

that maximizes the ASK loss under the given 652

constraints on perturbations and adversarial examples. 653

Algorithm 1 shows the details of implementing ASK-Atk, 654

which includes steps of gradient ascent and 655

projections. 656
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Algorithm 2 ASK-Defense
Require: Initial model θ ; model weights before the target

layer l, θl ; number of total training epochs E ; number of
batches in one epoch T ; attack power ε; penalty parameter
λ; number of reference data points in each class K ; refer-
ence data Srt in each batch.
for e = 1, · · · ,E do
for t = 1, · · · ,T do
St (ε) ←− AttackCE(θ, St ). S lt (ε) ←−

AttackASK(θl, St ).
θ ←− UpdateCE(θ, St (ε)) +

λUpdateASK(θl, S lt (ε), Srt (ε)).
end for

end for
Output: θ .

APPENDIX C657

ALGORITHM FOR ASK-DEF658

ASK-Def is constructed in two stages corresponding to adver-659

sarial examples generation and model update. The inner max-660

imization can be efficiently solved using gradient ascent with661

projection, and the model weights are updated using gradient662

descent. The pseudocode for the full ASK-Def procedure663

is given in Algorithm 2. AttackCE and AttackASK refer to664

our generators on DNN cross-entropy and on ASK loss.665

UpdateCE and UpdateASK denote the gradient updates of first666

and second terms in model update stage.667

APPENDIX D668

DATASETS, MODELS, AND SETTINGS669

A. DATASETS670

We mainly utilize two datasets, CIFAR-10 and Imagenette671

(10 sub-classes of ImageNet), to demonstrate the effective-672

ness of our methods. CIFAR-10 contains 50000 training sam-673

ples and 10000 test samples. Each image is in the size of674

32× 32× 3. Imagenette contains 10 classes from ImageNet675

and includes 9469 training samples and 3925 test samples.676

We rescale each image to 128× 128× 3. These two datasets677

are also used in many state-of-the-art empirical attacks and678

defenses. As a comparison, DkNN and DkNN-Atk only679

consider simpler datasets like MNIST and SVHN. In the680

experiments on data space, we utilize MNIST [26] and681

Fashion-MNIST [27]. The reason is that both CIFAR-10682

and Imagenette have poor kNN classification accuracy in683

the data space. Both MNIST and Fashion-MNIST consist of684

60000 training samples and 10000 test samples.685

B. MODELS686

VGG16 and ResNet18 architectures are used for CIFAR-10687

and Imagenette, respectively. The CIFAR-10 model used for688

attack evaluation (the same baseline model used in ASK-Def689

comparison) is adversarially trained with ε = 4. The Ima-690

genette model used for attack evaluation (the same baseline691

model used in ASK-Def comparison) is adversarially trained692

with ε = 2.We apply Deep k-Nearest Neighbor (DkNN) [10] 693

on hidden layers of VGG16 and ResNet18. 694

C. DkNN LAYER SELECTION 695

Note that both VGG16 and ResNet18 contain five convo- 696

lutional layer blocks. We name the ith block Conv i. Conv 697

5 is close to the output layer, thus the robustness is similar to 698

the output, which is lower than Conv 4 and Conv 3. In con- 699

trast, Conv 1 and Conv 2 are shallow layers that have not 700

learned good features and have low standard/robust accuracy. 701

We consider the third and fourth convolutional layer blocks of 702

VGG16 and ResNet18 since these two layers have the highest 703

robust accuracy compared to others. We also study different 704

combinations of layers and show results in Table 3. 705

D. TOTAL AMOUNT OF COMPUTE AND TYPE OF 706

RESOURCES 707

We use 1 GPU (Tesla V100) with 64GB memory and 2 cores 708

for all the experiments. 709

E. ATTACK SETTINGS 710

WecompareASK-AtkwithAdvKnn [14] andDkNN-Atk [13] 711

on DkNN classifiers. We use 20 iteration steps for all the 712

attacks. For AdvKnn, we train the deep kNN block with 713

100 epochs. For DkNN-Atk, we select the optimal hyperpa- 714

rameter in the sigmoid function on each attack. We consider 715

the third and fourth convolutional layers of VGG16 and 716

ResNet18 since these two layers have the highest robust accu- 717

racy compared to others. For all the tests on CIFAR-10 (Ima- 718

genette), we randomly select 20000 (8500) training samples 719

that are equally distributed across different classes. All the 720

test data examples are used for evaluation. We show results 721

using 95% confidence intervals over 20 trials. If not otherwise 722

specified, we use ε = 8 for evaluating both CIFAR-10 and 723

Imagenette and use the nearest neighbor number K = 5 by 724

default.We find the optimal τl (andωl for combined layers) in 725

the first batch and then fix these parameters in the following 726

batches. For both the CIFAR-10 and Imagenette baseline 727

models, we use τ3 = τ4 = 0.03. For the combined layers 728

of the CIFAR-10 baseline model, we use ω3 = ω4 = 0.5. 729

For the combined layers of the Imagenette baseline model, 730

we use ω3 = 0.1 and ω4 = 0.9. 731

F. DEFENSE SETTINGS 732

Our main goal is to harden both Conv 3 and Conv 4 via ASK- 733

Def. Note that Conv 4 will not be robustified if applying 734

ASK loss to Conv 3. We find that applying ASK loss to 735

Conv 4 can reach similar robustness compare to applying 736

ASK loss to both Conv 3 and Conv 4, and in the mean- 737

time, enjoys less computational cost. In ASK-Def, we set 738

λ = 1, and τ4 = 0.1. We show results using 95% confi- 739

dence intervals over 10 trials. Throughout the experiments 740

on defense, we implement ASK-Atk, DkNN-Atk, AdvKnn as 741

the evaluation methods to test DkNN robustness on models 742

trained by Adversarial Training (AT) [15], AT [15]+ Soft 743

Nearest Neighbor (SNN) [19], and the models trained by 744
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TABLE 9. The targeted attack of ASK-Attack (ASK-Atk) can achieve the similarly good performance as non-targeted attack of ASK-Atk on both CIFAR-10
and Imagenette All the methods are applied on the same DNN model. ASK-Atk and DkNN are implemented on the same layers and use the `2 similarity in
the ASK loss (2).

TABLE 10. The random sampling strategy of ASK-Attack (ASK-Atk) performs not as good as using the exact kNN search, but still outperforms AdvKnn [14]
and DkNN-Atk [13] on both CIFAR-10 and Imagenette All the methods are applied on the same DNN model. ASK-Atk and DkNN are implemented on the
same layers and use the cosine similarity in the ASK loss (2).

the ASK-Def. Similarly, we apply SSN to Conv 4. When745

evaluating the models trained by different robust training746

methods, we find the optimal τl and ωl in the same way as747

discussed in the attack setting.748

APPENDIX E749

ADDITIONAL EXPERIMENTAL RESULTS OF ASK-ATK750

A. TARGETED ATTACK AND RANDOM SAMPLING751

STRATEGY752

For the targeted attack we simply replace
∑C

c6=y S(fθl ; x +753

δ,X l−c ) with S(fθl ; x + δ,X
l−
ct ) in the ASK loss. Here we754

select the target class by calculating the average distance to x.755

We show that the targeted attack of ASK-Atk can achieve the756

similarly good performance as non-targeted attack on both757

CIFAR-10 and Imagenette, as shown in Table 9. In Table 10,758

we show how the attack perform when we select X l−y ran-759

domly. The results indicate that selecting X l−y randomly can760

still provide a stronger attack than AdvKnn [14] and DkNN-761

Atk [13] (results for these attacks are shown in Tables 1, 2).762

To achieve an optimal attack, X l−y should be selected using763

kNN search.764

B. EXPERIMENTS WHEN VARYING K (ATTACK) AND K765

(CLASSIFIER) FROM 15 TO 75766

Here we focus on larger K (K ≥ 9).The following Table 11767

shows that the ASK-Atk can achieve a good performance768

when K increases from 15 to 75.769

C. WHEN K IS DIFFERENT FOR X l+
y AND X l−

y770

Here we study the performance of ASK-Atk when K is771

different for X l+y and X l−y . We use K+ and K− to represent772

the K for X l+y and X l−y , respectively. We vary K+ from 3 to 773

7, and vary K− from 1 to 9. The number of nearest neighbors 774

in DkNN is always set as K+. We conduct all experiments on 775

CIFAR-10 to Conv 4. We use the default ε = 8. The results 776

are shown in Figure 12. One can see that ASK-Atk can still 777

achieve good performances when X l+y and X l−y have different 778

K . When K+ ≥ 3, ASK-Atk becomes stronger for K− ≥ 3. 779

D. ADDITIONAL NOTES ON OUR RESULTS 780

Despite the higher success rate of ASK-Atk, we also find that 781

the ASK-Atk is much faster than DkNN-Atk and AdvKnn. 782

Under our setting, ASK-Atk is around 20 times faster. 783

APPENDIX F 784

ADDITIONAL EXPERIMENTAL RESULTS OF ASK-DEF 785

A. ROBUSTNESS UNDER DIFFERENT K 786

We also check how the model (trained by ASK-Def) robust- 787

ness changes when K in ASK-Atk and DkNN varies. One 788

can see from Figure 5 that the model trained by ASK-Def 789

achieves higher robustness under different K compared to the 790

model trained by conventional adversarial training [15]. 791

B. VARIANTS OF ASK-DEFENSE 792

ASK-Defense can be combined with variants of adversarial 793

training, e.g., TRADES [16] or other state-of-the-art robust 794

trainingmethods. Here we replace the first loss term (together 795

with the adversarial generator) with TRADES loss term. 796

We name the ASK-Defense with TRADES loss term to ASK- 797

Defense (TRADES). We conduct additional experiments on 798

comparingwith TRADES. Table 13 shows that ASK-Defense 799

(TRADES) outperforms TRADES. 800
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TABLE 11. ASK-Attack (ASK-Atk) retains good performance when varying K (Attack) and K (Classifier) from 15 to 75. Each entry shows the classification
accuracy of the classifier. ASK-Atk and DkNN are applied on Conv 3, 4.

TABLE 12. ASK-Atk performs well when K is different for X l+
i and X l−

i . Here we use K+ and K− to represent the K for X l+
i and X l−

i , respectively. All
experiments are conducted on CIFAR-10 to convolutional layer 4.

TABLE 13. ASK-Defense (TRADES) outperforms TRADES [16]. We combine ASK-Defense with the TRADES loss term. The ASK-Defense (TRADES) has a
better performance on the robustification of different layers under the cosine similarity using CIFAR-10. We evaluate the robustness of different defenses
using ASK-Atk with ε = 4,8.

TABLE 14. ASK-Defense (ASK-Def) outperforms Adversarial Training (AT) [15] and AT [15]+Soft Nearest Neighbor [19] (AT+SNN) under the ASK-Attack
with an increasing number of attack iteration steps. We fix the attack power ε = 8 and use the cosine similarity. All experiments are conducted on
CIFAR-10 and are applied on convolutional layer 4. Other settings follow the default settings in the paper.

C. DEFENSE AGAINST ATTACKS WITH LARGE ITERATION801

NUMBER802

We conduct experiments on increasing the iteration steps803

of ASK-Attack. Experimental results in Table 14 show that804

the ASK-Defense (ASK-Def) outperformsAdversarial Train-805

ing (AT) [15] and AT [15]+Soft Nearest Neighbor [19]806

(AT+SNN) under the ASK-Attack with an increasing num-807

ber of attack iteration steps. Another observation is that808

increasing the number of iteration steps has little impact on809

the performance when iter ≥ 20.810

APPENDIX G811

FAILURE CASES ANALYSIS AND SOCIAL IMPACT812

A. FAILURE CASES ANALYSIS813

Here we provide more analysis on those failure cases. A con-814

sistent observation with the analysis in the main paper is815

that the average similarity gap between the largest class and 816

the runner-up class for failure cases is 0.1555, while it is 817

only 0.0519 for success cases (here we use cosine similarity). 818

Again, these observations indicate that the failure cases are 819

generally more compact with their neighbors belonging to 820

ground truth classes and thus hard to attack. We also analyze 821

the failure of ASK-Attack from the visualization perspective. 822

We found that the failure cases usually contain more distinc- 823

tive features belonging to ground truth classes. For example, 824

the truck looks more stereoscopic. 825

B. SOCIETAL IMPACT 826

The broad motivation of our work is to explore the robustness 827

of kNN-based deep learning models, which has not been 828

thoroughly studied. We believe this goal is highly relevant 829

to the machine learning/artifical intelligence community, and 830

103086 VOLUME 10, 2022



R. Wang et al.: ASK: Adversarial Soft k-Nearest Neighbor Attack and Defense

FIGURE 5. ASK-Defense (ASK-Def) outperforms Adversarial Training
(AT) [15] when attacks and DkNN vary the number of nearest
neighbors K . The ASK-Def does a better robustification of different layers
using CIFAR-10. We add ASK loss to convolutional layer 4 and test on
convolutional layers 3 and 4.

the methods that our paper introduces can be brought to bear831

on other deep learning/non-parametric learning problems of832

interest.833
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