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Abstract
Biomimetics has played a key role in the evolution
of artificial neural networks. Thus far, in silico
metaphors have been dominated by concepts from
neuroscience and cognitive psychology. In this
paper we introduce a different type of biomimetic
model, one that borrows concepts from the im-
mune system, for designing robust deep neural
networks. This immuno-mimetic model leads to a
new computational biology framework for robusti-
fication of deep neural networks against adversar-
ial attacks. Within this Immuno-Net framework
we define a robust adaptive immune-inspired
learning system (Immuno-Net RAILS) that em-
ulates, in silico, the adaptive biological mecha-
nisms of B-cells that are used to defend a mam-
malian host against pathogenic attacks. When ap-
plied to image classification tasks on benchmark
datasets, we demonstrate that Immuno-net RAILS
results in improvement of as much as 12.5% in
adversarial accuracy of a baseline method, the
DkNN-robustified CNN, without appreciable loss
of accuracy on clean data.

1. Introduction
Primarily motivated by cognitive neuroscience, deep neural
networks (DNNs) have reached impressive performance on
various tasks (Mehdipour Ghazi and Kemal Ekenel, 2016;
Zhao, Zheng, Xu, and Wu, 2019; Young, Hazarika, Po-
ria, and Cambria, 2018). The neuro-mimetic point of view
has driven both the development of machine learning ar-
chitectures and machine learning procedures. For example,
early inspiration for the convolutional neural network (CNN)
came from models of the visual cortex of the brain (Lind-
say, 2020) and the popular machine learning frameworks of
transfer learning lifelong learning are firmly rooted in cog-
nitive psychology (Thrun & Pratt, 2012; Parisi et al., 2019).
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However, the extraordinary performance of current DNNs
on clean data still have a frustrating lack of robustness to
small covariate shifts, e.g., adversarial attacks or drift of test
data from their nominal training distributions. In the natu-
ral world such robustness is instantiated by another highly
evolved biological system: the adaptive immune system.
Motivated by analogies between robust machine learning
and robustification mechanisms implemented by the im-
mune system, we propose an immuno-mimetic framework
for deep neural networks (Immuno-Net) that complements
the neuro-cognitive perspective. In this paper, we define
the Immuno-Net framework and develop an artificial ro-
bust adaptive immune learning system (RAILS), which is
inspired by the mechanisms of B-cell affinity maturation in
the mammalian immune system.

Similar to the human neural-cognitive system (Elsayed,
Shankar, Cheung, Papernot, Kurakin, Goodfellow, and Sohl-
Dickstein, 2018), DNNs are vulnerable to small perturba-
tions, e.g., from adversarial attacks (Goodfellow, Shlens,
and Szegedy, 2014). Conversely, the mammalian immune
system has the inherent capability to defend against a di-
verse set of attacks (bacterial, viral, fungal, and other in-
fections) due to its built-in discrimator between self and
non-self components (Farmer, Packard, and Perelson, 1986).
Through mechanisms of selection, hypermutation, and pro-
liferation the adaptive immune system produces B-cells
with increasing affinity to the external threat and is able
to employ these solutions to further increase robustness
by learning from multiple such attacks (Mesin, Ersching,
and Victora, 2016; Mesin, Schiepers, Ersching, Barbulescu,
Cavazzoni, Angelini, Okada, Kurosaki, and Victora, 2020).
Furthermore, the immune system is able to further increase
robustness by adaptively learning from multiple attacks
(Mesin, Schiepers, Ersching, Barbulescu, Cavazzoni, An-
gelini, Okada, Kurosaki, and Victora, 2020).

The proposed Immuno-Net RAILS approach emulates the
biological immune system in silico.

Our framework differs significantly from existing DNN ro-
bustification methods such as: outlier detection (Metzen,
Genewein, Fischer, and Bischoff, 2017; Feinman, Curtin,
Shintre, and Gardner, 2017; Grosse, Manoharan, Papernot,
Backes, and McDaniel, 2017), and training-phase DNNs ro-
bustification (Madry, Makelov, Schmidt, Tsipras, and Vladu,
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Figure 1. Simplified biological immune system (left) and ImmunoNet RAILS computational workflow (right). Both systems are composed
of a five-step process. We consider affinity maturation (De Silva & Klein, 2015) as the combination of expansion and optimization.

2017; Zhang, Yu, Jiao, Xing, Ghaoui, and Jordan, 2019; Co-
hen, Rosenfeld, and Kolter, 2019) in that the immune system
emulation provides a complete end-to-end solution to the
adversarial robustness problem.

Specifically, we make the following contributions:

• Immuno-Net RAILS is the first robust adversarial de-
fense framework for DNNs, based on the natural adap-
tive immune system. In particular: (1) Immuno-Net
RAILS emulates the principal mechanisms of the im-
mune response to defend against novel attacks; (2) The
learning rates exhibited by RAILS align with those
of the immune system; and (3) Immuno-Net RAILS
can further improve robustness by emulating adaptive
learning (life-long learning) in the immune system.

• We demonstrate that Immuno-Net RAILS improves
adversarial robustness of the Deep k-Nearest Neigh-
bor (DkNN) CNN (Papernot and McDaniel, 2018) by
5.62%, 12.5%, 10.32% for the MNIST, SVHN, and
CIFAR-10 datasets, respectively.

2. Immune System to Computational System
2.1. Simplified Immune System

The mammalian adaptive immune system has designed
robustness into its biological architecture (Rajapakse and
Groudine, 2011). The adaptive immune system is highly
complex, so we simplify its learning process into five sub-
processes: sensing, flocking, expansion, optimization, and
consensus (Cucker and Smale, 2007; Rajapakse and Smale,
2017). As shown in Fig. 1, sensing of an attack leads to
initial B-cells flocking to lymph nodes, and forming tempo-
rary structures called germinal centers (De Silva and Klein,
2015; Farmer, Packard, and Perelson, 1986). Germinal cen-
ters are populated in the expansion and optimization phases
(together called affinity maturation), where a diverse set of
B-cells bearing antigen-specific immunoglobulins divide
symmetrically and asymmetrically with mutation and B-

cells with high affinity to the antigen are selected to the
next generation (Mesin et al., 2016). Memory B-cells are
selected and stored within the evolving process, and can be
used to defend against similar future attacks. In the consen-
sus phase, plasma B-cells are generated by selecting those
B-cells that reach a threshold affinity against the foreign
antigen. Plasma B-cells (along with their generated antibod-
ies) represent the optimal solution of the adaptive immune
response to a specific attack.

2.2. From Immune Response to Computation

Motivated by the simplified biological immune system, we
propose a new immuno-mimetic learning strategy - the
Immuno-Net Robust Adversarial Immune-inspired Learning
System (Immuno-Net RAILS). The comparison in Fig. 1
shows that both the biology in the immune system and the
computational biology in Immuno-Net RAILS are com-
posed of the same five-step process. Similar to the B-cell
population growth during the clonal expansion, RAILS en-
larges the population of candidates then selects high-affinity
and moderate-affinity candidates to proliferate to predict the
present inputs and defend against future attacks.

Fig. 2 shows the learning curves of Immuno-Net RAILS
and the immune system and demonstrates that Immuno-Net
RAILS captures key properties of the immune system. The
learning curves depict the change of affinity between the
population of defenders (B-cells) and the threat (antigen)
over time. Note that in the computational system, the anti-
gen is the test data. The initial B-cells (initial candidates)
are all from the flocking phase of response to antigen 1 (test
data 1), which results in a mismatch to antigen 2 (test data
2), and thus cause the red affinity curves to remain relatively
low. One can also see that both green curves meet a small
drop at the early stage and monotonically increase there-
after. This two-phase learning process happens due to a
diversity vs. selection trade-off; diversity comes from the
population size increasing and the randomness in generating
new data points, while the selection arises from selection of
high-affinity B-cells (newly generated data points).
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Figure 2. Correspondence between learning rates of Immuno-Net
RAILS computational biology model (right) and observed learning
rates of in vitro B-cells in the natural immune system (left). The
flatten region in the red curve (right) corresponds to Immuno-Net
RAILS early stopping when there is no solution. The biological
experiments were performed in the Rajapakse Lab.

Algorithm 1 Immuno-Net RAILS
Require: Test data point x; Training dataset Dtr =
{D1,D2, · · · ,DC}; Number of Classes C; Model M
with feature mapping fl(·), l ∈ L; Affinity function A.
Sensing

1: Check the threat score to detect the threat of x.
Flocking

2: for c = 1, 2, . . . , C do
3: In each layer l ∈ L, find the k-nearest neigh-

bors N c
l of x in Dc by ranking the affinity score

A(fl;xj ,x),xj ∈ Dc
4: end for

Affinity maturation: Expansion and Optimization
5: For each layer l ∈ L, do
6: Generate P(0) through mutating each of x′ ∈

Union({N 1
l ,N 2

l , · · · ,NC
l }) T/kC times.

7: for g = 1, 2, . . . , G do
8: for t = 1, 2, . . . , T do
9: Select data-label pair (xp, yp) from P(g−1) based

on Pg−1 = Softmax(A(fl;P(g−1),x)/τ).
10: Pick all the data Syp belonging to class yp in

P(g−1) and calculate Pyp =
Pg−1(Syp )∑
Pg−1(Syp )

11: Select another pair (x′p, yp) and apply cross-over
and mutation on the two pairs of data. Add the
obtained offspring xos to P(g).

12: end for
13: end for
14: Calculate the affinity score A(fl;P(G),x),∀l ∈ L
15: Select the top 5% as plasma data Slp and the top 25% as

memory data Slm based on the affinity scores, ∀l ∈ L
16: end For

Consensus
17: Obtain the prediction y of x using the majority vote of

the Sp = {S1
p , S

2
p , · · · , S

|L|
p }

18: Output: y, the memory data Sm =

{S1
m, S

2
m, · · · , S

|L|
m }

3. Immuno-Net RAILS Computations
In this section, we describe the implementation of Immuno-
Net RAILS as in silico analogs to flocking through consen-
sus phases in immune response (Fig. 1). Given the mapping
from input to layer l, fl : Rd → Rd′ and x1,x2 ∈ Rd, we
first define the affinity A(fl;x1,x2) between x1 and x2 on
layer l. The affinity can be measured in different ways, e.g,
inverse `p distance, cosine similarity, or inner product. Here
we use the negative Euclidean distance measurement, i.e.,
A(fl;x1,x2) = −‖fl(x1)−fl(x2)‖2. Algorithm 1 depicts
Immuno-Net RAILS’ five-step workflow. We explain each
step in detail in the subsequent section.

3.1. Five-Step Workflow

Sensing. This step emulates the immune system’s
self/non-self detection and performs the initial discrimina-
tion between perturbed inputs and clean inputs. The sensing
step can effectively prevent Immuno-Net RAILS from be-
coming overwhelmed by false positives, i.e., treating clean
inputs as adversarial inputs. This is implemented using
an outlier detection procedure, for which there are several
different methods available (Feinman, Curtin, Shintre, and
Gardner, 2017; Xu, Evans, and Qi, 2017). The sensing stage
provides a confidence score of the architecture and does not
affect Immuno-Net RAILS’s predictions.

Flocking. Similar to the B-cells flocking to lymph nodes,
Immuno-Net RAILS leverages flocking to provide an initial
population for the affinity maturation process. At the imple-
mentation level, flocking is used to find the k-nearest neigh-
bors that have the highest initial affinity score to the input
data in each selected layer and from each class. We con-
struct kNN sets N c

l independently for each class c, thereby
ensuring that the initial population for every class is bal-
anced.

N c
l = {(x̂, yc)|Rc(x̂) ≤ k, (x̂, yc) ∈ Dc}

Given
A(fl;x

c
i ,x) ≤ A(fl;xcj ,x)⇐ Rc(i) > Rc(j)

∀c ∈ [C], l ∈ L,∀i, j ∈ [nc],

(1)

where L is the set of the selected layers. x denotes the input.
Dc represents the training data from class c with the size
|Dc| = nc. Rc : [nc]→ [nc] is a ranking function that sorts
the indices based on the affinity score. The candidates for
flocking might purely come from the original training data
or include the memory database which will be clear in the
optimization stage introduction.

Expansion and Optimization. The expansion step starts
from the initial population, and generates new examples
(which are offspring) from the existing examples (which are
parents) in the population. The “initial B-cells” are nearest
neighbors found by (1) in the flocking step, where there are
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kC data points in total. We then enlarge the population size
to T by copying each nearest neighbor T

kC times with ran-
dom mutations. We call the fist T size population as the 0-th
generation. We now introduce the rule of generating new
generations. Let P(g−1) = [xp(1),xp(2), · · · ,xp(T )] ∈
Rd×T denote the population in the (g − 1)-st generation.
Then the candidates for generating the g-th generation are
selected by

P̂(g−1) = P(g−1)Zg−1, (2)

where Zg−1 ∈ RT×T is a binary selection matrix whose
columns are independent and identically distributed draws
from Mult(1,P), the multinomial distribution with selection
probability vector P ∈ [0, 1]T . The selection probability for
each candidate is obtained through a softmax function.

P(xi) = Softmax(A(fl;xi,x)/τ)

= exp (A(fl;xi,x)/τ)∑
xj∈S

exp (A(fl;xj ,x)/τ)
, (3)

where S is the set of data points and xi ∈ S. τ > 0 is the
sampling temperature that controls sharpness of the softmax
operation.

We further leverage cross-over and mutation operations to
increase candidate diversity. In Immuno-Net RAILS, we
select two parents from the selected candidates (2) that share
the same label, and apply the cross-over operator to com-
bine the two parents together. The cross-over combination
is implemented by selecting at random each of its elements
(pixels) from the corresponding element of either parent1
or parent2 based on their affinity score. After the combi-
nation, mutation is leveraged to generate the offspring xos
that belongs to the (g − 1)-st generation. This operation
randomly and independently mutates the data with prob-
ability ρ, adding uniformly distributed noise in the range
[−δmax,−δmin] ∪ [δmin, δmax]. Given examples lie in [0, 1]d,
the resulting perturbation vector is subsequently clipped to
satisfy the domain constraint.

After multiple generations, RAILS selects generated exam-
ples with high-affinity scores to be plasma data, and ex-
amples with moderate-affinity scores are saved as memory
data. Similar to plasma B-cells, plasma data represents an
optimal solution to the current attack. Memory data can be
seen as an analog to memory B-cells, which help warm-start
defense responses to similar attacks in future. We set the
threshold to be 0.05 and 0.25 for selecting plasma data and
memory data, respectively, i.e, top 5% of final generation
will become plasma data, and top 25% will become memory
data. Sp = {S1

p , S
2
p , · · · , S

|L|
p } denotes the plasma data

we selected from each layer. The memory data is denoted
by Sm = {S1

m, S
2
m, · · · , S

|L|
m }. In this paper, we will only

focus on static learning, i.e., only leveraging the plasma data
to make predictions.

Consensus. All the new examples generated in each gen-
eration are associated with labels that are inherited from
their parents. The consensus step uses majority voting of
the plasma data for prediction of the class label of input x.

4. Experimental Results
We compare Immuno-Net RAILS to standard Convolutional
Neural Network Classification (CNN) and Deep k-Nearest
Neighbors Classification (DkNN) (Papernot & McDaniel,
2018) on the MNIST (LeCun et al., 1998), SVHN (Netzer
et al., 2011), and CIFAR-10 (Krizhevsky & Hinton, 2009).
In addition to the benign test examples, we also generate
the same amount of adversarial examples using PGD attack
(Madry et al., 2017). The attack strength is ε = 60/8/8
for MNIST, SVHN, and CIFAR-10 by default. The perfor-
mance will be measured by standard accuracy (SA) evalu-
ated using benign test examples and robust accuracy (RA)
evaluated using the adversarial test examples.

Immuno-Net RAILS leverages static learning to make the
predictions. The results are shown in Table 1. One can
see that RAILS delivers a 5.62%/10.32%/12.5% improve-
ments in RA over DkNN without appreciable loss of SA on
the three datasets.

Table 1. SA/RA performance of Immuno-Net RAIL (RAILS) ver-
sus CNN and DkNN. Immuno-Net RAILS obtains higher RA for
all three datasets.

SA RA
MNIST RAILS (ours) 97.95% 76.67%
(ε = 60) CNN 99.16% 1.01%

DkNN 97.99% 71.05%
SVHN RAILS (ours) 90.62% 48.26%
(ε = 8) CNN 94.55% 1.66%

DkNN 93.18% 35.7%
CIFAR-10 RAILS (ours) 82% 52.01%
(ε = 8) CNN 87.26% 32.57%

DkNN 86.63% 41.69%

5. Conclusion
Inspired by the immune system, we proposed a new de-
fense framework for deep learning models. Immuno-Net
RAILS is able to emulate biological processes with evo-
lutionary programming that model natural selection and
affinity maturation of B-cells in the natural immune system.
Our experiments show that the Immuno-Net RAILS learn-
ing curve mimics the diversity-selection learning phases
observed in in vitro B-cell affinity maturation experiments
in the Rajapakse lab.

In future work, we will explore the mechanisms of the im-
mune system’s adaptive learning (life-long learning) and
covariate shift adjustment, which will be consolidated into
our computational framework.
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