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ABSTRACT Adversarial attacks against deep neural networks (DNNs) are continuously evolving, requiring
increasingly powerful defense strategies. We develop a novel adversarial defense framework inspired by the
adaptive immune system: the Robust Adversarial Immune-inspired Learning System (RAILS). Initializing
a population of exemplars that is balanced across classes, RAILS starts from a uniform label distribution
that encourages diversity and uses an evolutionary optimization process to adaptively adjust the predictive
label distribution in a manner that emulates the way the natural immune system recognizes novel pathogens.
RAILS’ evolutionary optimization process explicitly captures the tradeoff between robustness (diversity)
and accuracy (specificity) of the network, and represents a new immune-inspired perspective on adversarial
learning. The benefits of RAILS are empirically demonstrated under eight types of adversarial attacks on
a DNN adversarial image classifier for several benchmark datasets, including: MNIST; SVHN; CIFAR-10;
and CIFAR-10. We find that PGD is the most damaging attack strategy and that for this attack RAILS
is significantly more robust than other methods, achieving improvements in adversarial robustness by
≥ 5.62%, 12.5%, 10.32%, and 8.39%, on these respective datasets, without appreciable loss of classification
accuracy. Codes for the results in this paper are available at https://github.com/wangren09/RAILS.

INDEX TERMS Bio-inspired deep learning, adversarial robustness, deep network defense strategies.

I. INTRODUCTION
The state of the art in supervised deep learning has dra-
matically improved over the past decade [1]. Deep learning
techniques have led to significant advances in applications
such as: face recognition [2]; object detection [3]; and nat-
ural language processing [4]. Despite these successes, deep
learning techniques are not resilient to evasion attacks (a.k.a.
adversarial attacks) on test inputs and poisoning attacks on
training data [5]–[7]. The adversarial vulnerability of deep
neural networks (DNN) have restricted their application,
motivating researchers to develop effective defense methods.
The focus of this paper is to develop a novel deep defense
framework inspired by the mammalian immune system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kostas Kolomvatsos .

Current adversarial defense strategies can be divided into
four classes: (1) detection of adversarial samples [8]–[10];
(2) Robust training [11]–[14]; (3) data denoising and recon-
struction [15], [16]; and (4) deep adversarial learning archi-
tectures [17], [18]. The first class of methods defends a
DNN using simple outlier detection models for detecting
adversarial examples. However, it has been shown that such
adversarial detection methods can be easily defeated [19].
Robust training aims to harden themodel to deactivate attacks
such as evasion attacks. Known robust training methods are
often tailored to a certain level of attack strength in the context
of `p-perturbation. Moreover, the trade-off between accuracy
and robustness presents design challenges [12]. The data
denoising and reconstruction class of methods is driven by an
intuitive idea that adversarial examples can be mapped to the
manifold of clean examples through data reconstruction by
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denoising. However, while denoising can reduce adversarial
perturbations it can also distort the inputs [20], providing new
opportunities for an attacker to exploit the defense mecha-
nism [21]. Deep adversarial learning architectures directly
design the defense into the layers of the neural network,
e.g., by robustifying them with k-NN’s [17] or modifying
a generative adversarial network (GAN) [18]. Despite these
advances, current methods still have difficulty providing an
acceptable level of robustness to novel attacks [22].

To design an effective defense, it is natural to consider
a learning strategy that emulates mechanisms of the natu-
rally robust biological immune system. The power of arti-
ficial immune system (AIS) models have been established
in many other applications [23]–[25]. While AIS approaches
to enhancing DNN adversarial robustness have been pre-
viously developed [26], [27], they have been restricted to
simple emulations of the innate immune system. In this
paper, we propose a new framework, Robust Adversarial
Immune-inspired Learning System (RAILS), that can effec-
tively defend deep learning architectures against aggressive
attacks based on a refined biology model of the adaptive
immune system. Built upon a class-wise k-Nearest Neigh-
bor (kNN) structure, given a test sample RAILS finds an
initial small population of proximal samples, balanced across
different classes, with uniform label distribution. RAILS then
promotes the specificity of the label distribution towards
the ground truth label through an evolutionary optimization.
RAILS can efficiently correct adversarial label flipping by
balancing label diversity against specificity. While RAILS
can be applied to defending against many different types of
attacks, in this paper we restrict attention to evasion attacks
on the input. Figure 1 shows that RAILS outperforms existing
methods on various types of evasion attacks.

FIGURE 1. RAILS launches the best defense against different types of
attacks. Radar plot showing that RAILS has higher robust accuracy than
the adversarially trained CNN [11] and Deep k-Nearest Neighbor
(DkNN) [17] in defending against eight types of attacks: `∞-PGD attack/
`2-PGD attack [11], Fast Gradient Sign Method (FGSM) [5], Square
Attack [28], Adversarial Patch [29], AutoAttack [30], Boundary Attack [31],
and a (customized) ASK-Attack [32]. The benign accuracy for CNN, DkNN,
and RAILS are 87.26%, 86.63%, and 82%. We refer readers to Section IV
for more results.

Compared to existing defense methods, we make the fol-
lowing contributions:

• RAILS achieves better adversarial robustness by assign-
ing a uniform label distribution to each input and evolving
it to a distribution that is concentrated about the input’s true
label class. (see Section II and Table 2)
• RAILS incorporates a life-long robustifying process by

adding synthetic ‘‘virtual data’’ to the training data. (see
Section II and Table 5)
• RAILS evolves the distribution via mutation and cross-

over mechanisms and is not restricted to `p or any other
specific type of attack. (see Section III and Figure 1)
• We demonstrate that RAILS improves robustness of

existing methods for different types of attacks (Figure 1).
In particular, RAILS improves robustness against the highly
damaging PGD attack by ≥ 5.62%/12.5%/10.32%/8.39%
for the MNIST, SVHN, CIFAR-10 and CIFAR-100 datasets
(Table 2). Furthermore, we show that the RAILS implemen-
tation of life-long learning with training data augmentation
yields a 2.3% robustness improvement with only 5% augmen-
tation of the training data (Table 5).
• RAILS is the first adversarial defense framework to be

based on the biology of the adaptive immune system. In par-
ticular: (a) RAILS computationally emulates the principal
mechanisms of the immune response (Figure 2); and (b) our
computational and biological experiments demonstrate the
fidelity of the emulation - the learning patterns of RAILS and
the immune system are closely aligned (Figure 7).

A. RELATED WORK
After it was established that DNNswere vulnerable to evasion
attacks [6], different types of defense mechanisms have been
proposed. An intuitive idea is to eliminate the adversarial
examples through outlier detection, including training an
additional discrimination sub-network [8], [10] and using ker-
nel density estimation [9]. The above approaches rely on the
fundamental assumption that the distributions of benign and
adversarial examples are easily distinguishable, an assump-
tion that has been challenged in [19].

In addition to adversarial attack detection, other meth-
ods have been proposed that focus on robustifying the
deep architecture during the learning phase [11]–[13]. One
recent approach combines training with perturbed inputs and
hierarchical feature alignment between the adversarial and
clean domains to robustify the feature learning process [14].
Though such defenses are effective against adversarial exam-
ples with moderate levels of `p attack strength, they have
limited power to defend against stronger attacks, and there
is often a sacrifice in overall classification accuracy. In con-
trast, RAILS is developed to defend against diverse powerful
attacks with less sacrifice in accuracy, and can improve any
model’s robustness, including robust models.

A different family of defenses models adversarial inputs
as deviating from the manifold of clean data. This motivates
the use of projection methods for denoising the inputs, where
the inputs are mapped to the manifold [15], [16]. Examples
include mapping adversarial examples to a high-resolution
manifold using wavelet denoising and super resolution tech-
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FIGURE 2. Simplified immune system (left) and RAILS computational workflow (right): Both systems are composed of a four-step
process, which includes initial detection (sensing), recruiting candidates for diversity (flocking), enlarging population size and
promoting specificity (affinity maturation) [33], and obtaining the final solution (consensus).

niques [15] and to a low dimensional quasi-natural space with
a sparse transformation layer [16]. Despite the simple and
clear motivation, denoising methods have their own limita-
tions. For example, they can introduce distortions into clean
inputs [20] and have shown to fail to be robust to many
adversarial attacks [21], [34]. Instead of attempting to modify
inputs, RAILS evolves a statistical population of clones of the
input, resulting in enhancing resilience to attacks.

Another approach is to incorporate different architectures
to robustify deep classifiers [17], [18]. An example is the deep
k-Nearest Neighbor (DkNN) classifier [17] that robustifies
against instance perturbations by applying kNN’s to features
extracted from each layer. However, a single kNN classifier
applied on the whole dataset is easily to be fooled by strong
attacks (Figure 4). Conversely, RAILS incorporates an evolu-
tionary diversity to specificity defense mechanism which can
provide additional robustness to existing DNNs.

Network defense mechanisms inspired by the natural
immune system have been proposed for other applications,
different from the deep learning application considered in
this paper. Among these, artificial immune system (AIS)
approaches [35] have been used to defend against wormhole
attacks on mobile ad hoc networks [23], flooding attacks
on software-defined networks [24], and denial of service
attacks on the internet [25]. However, the closest point of
tangency to our RAILS approach is recent work that borrows
concepts from the innate immune system to detect adversarial
examples in DNN’s. The innate immune system, also known
as the non-specific immune system, is nature’s first line of
defense that launches an immediate non-specific response to
contain the pathogen using chemical cellular, and extracel-
lular mechanisms to prevent pathogen mobility and spread.
Mechanisms of innate immunity that have been emulated
in machine learning include: negative selection algorithm
approaches [26]; and cellular machanisms for early pathogen
recognition [27]. Different from the innate immune system,
the response of the adaptive immune system is longlasting,
specific and sustained, using clonal expansion to produce
B-cell and T-cell lymphocytes having antigen receptors spe-
cific to the pathogen. To the best of our knowledge, the
proposed RAILS adversarial defense framework is the first

to be based on the complex biology of the adaptive immune
system.

Another line of research relevant to ours is adversarial
transfer learning [36], [37], which aims to maintain robust-
ness when there is covariate shift between training data and
test data. We remark that covariate shift is naturally handled
by the mutation mechanism in our adaptive immune system
emulation of RAILS that adapts the defense to novel attacks.

B. LEARNING STRATEGIES OF IMMUNE SYSTEM
Systems robustness is a property that must be intentionally
designed into the architecture, and one of the greatest exam-
ples of this is the mammalian adaptive immune system [38].
The adaptive immune system is incredibly complex and not
something that we can hope to replicate at this time. However,
we can simplify its robust learning process into these four
steps: sensing, flocking, affinity maturation, and consensus
(Figure 2 left) [39], [40]. The architecture of the adaptive
immune system ensures a robust response to foreign antigens,
splitting the work between active sensing and competitive
growth to produce an effective antibody. Sensing of a foreign
attack leads to antigen-specific B-cells flocking to some tem-
porary structures for affinity maturation [33]. In the affinity
maturation phase, a diverse initial set of antigen-specific
B-cells divide to populate the temporary structures. Then the
genetic identity of each B-cell is encoded by the shape and
sequence of its protein, which can change from generation to
generation. The degree to which the encoding of the B-cell
matches the antigen is called the affinity. The B-cells with
the highest affinity to the antigen are selected to divide and
mutate, which leads to new B-cells with higher affinity to
the antigen [41]. B-cells that reach consensus, or achieve a
threshold affinity against the foreign antigen, undergo ter-
minal differentiation into plasma B-cells. Plasma B-cells
represent the antigen-specific solutions. Memory B-cells are
selected and stored to defend against similar attacks in the
future.

C. NOTATION AND PRELIMINARIES
Given a mapping f : Rd

→ Rd ′ and x1, x2 ∈ Rd ,
we first define the affinity score A(f ; x1, x2) between x1
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and x2. This affinity score can be defined in many ways, e.g,
cosine similarity, inner product, or inverse `p distance, but
here we use A(f ; x1, x2) = −‖f (x1) − f (x2)‖2, the negative
Euclidean distance. In the context of DNN, f denotes the
feature mapping from input to feature representation, and A
measures the similarity between two inputs. Higher affinity
score indicates higher similarity.

II. RAILS: OVERVIEW
In this section, we give an overview of RAILS, and provide
a comparison to the natural immune system. The architec-
ture of RAILS is illustrated in Figure 3. For each selected
hidden layer l, RAILS builds class-wise kNN architectures
on training samples Dtr . Then for each test input x, a pop-
ulation of candidates is selected and goes through an evolu-
tionary optimization process to obtain the optimal solution.
In RAILS, two types of data are obtained after the evolu-
tionary optimization: ‘plasma data’ for optimal predictions of
the present inputs, and ‘memory data’ for the defense against
future attacks. These two types of data correspond to plasma
B cells and memory B cells in the biological system, and
play important roles in static learning and adaptive learning,
respectively.

FIGURE 3. The architecture of RAILS. For each test input, a special type
of data - plasma data - is generated by evolutionary optimization, that
contributes to predicting the class of the input (test) sample. Another
type of data - memory data - is generated and stored to help defend
against similar attacks in the future. Plasma data and memory data are
analogous to plasma B cells and memory B cells in the immune system.

A. DEFENSE WITH STATIC LEARNING
Adversarial perturbations can severely affect deep classifiers,
forcing the predictions to be dominated by adversarial classes
rather than the ground truth. For example, a single kNN clas-
sifier is vulnerable to adversarial inputs, as shown in Figure 4.
The purpose of static learning is to address this issue,
i.e., maintaining or increasing the prediction probability of
the ground truth pytrue(x)l (x) when the input x is manipulated
by an adversary. The key components include (i) a label ini-
tialization via class-wise kNN search on Dtr that guarantees
labels across different classes are uniformly distributed for

each input; and (ii) an evolutionary data-label optimization
that promotes label distribution specificity towards the input’s
true label class. Our hypothesis is that the covariate shift of
the adversarial examples from the distribution of the ground
truth class is small in the input space, and therefore new
examples inherited from parents of ground truth class ytrue
have higher chance of reaching high-affinity. The evolution-
ary optimization thus promotes the label specificity towards
the ground truth. The solution denotes the data-label pairs
of examples with high-affinity to the input, which we call
plasma data. After the process, a majority vote of plasma
data is used to make the class prediction. We refer readers to
Section III for more implementation details and Section IV-A
for visualization. In short, static learning defenses seek to
correct the predictions of current adversarial inputs and do
not plan ahead for future attacks.

FIGURE 4. Representation examples showing RAILS
correcting (improving) the wrong (unconfident) predictions by CNN and
kNN. kNN predict all three examples with ≤ 100% confidence of the
ground truth class, and CNN gets wrong predictions for images 2 and 4.
RAILS provides correct predictions with high confidence scores.

B. DEFENSE WITH ADAPTIVE LEARNING
Different from static learning, RAILS adaptive learning tries
to use information from past attacks to harden the classifier
to defend against future attacks. Hardening is done by lever-
aging another set of data - memory data generated during
evolutionary optimization. Unlike plasma data, memory data
is selected from examples with moderate-affinity to the input,
which can rapidly adapt to new variants of the adversar-
ial examples. This selection logic is based on maximizing
coverage over future attack-space rather than optimizing for
the current attack. Adaptive learning is a life-long learning
process and can use hindsight to greatly enhance resilience of
pytrue(x)l (x) to attacks. This paper will focus on static learning
and single-stage adaptive learning that implements a single
cycle of classifier hardening.

C. A BIOLOGICAL PERSPECTIVE
RAILS is inspired by and closely associated with the bio-
logical immune system. The architecture of the adaptive
immune system ensures a robust response to foreign anti-
gens to produce an effective antibody. Figure 2 displays a
comparison between the immune system workflow and the
RAILS workflow. Both systems are composed of a four-step
process. For example, RAILS emulates flocking from the
immune system by initializing a population of candidates
that provide diversity, and emulates affinity maturation via
an evolutionary optimization process to promote specificity.
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Similar to the functions of plasma B cells and memory B cells
generated in the immune system, RAILS generates plasma
data for predictions of the present inputs (immune system
defends antigens though generating plasma B cells) and gen-
erates memory data for the defense against future attacks
(immune system continuously increases its degree of robust-
ness through generating memory B cells). We refer readers to
Appendix A for a table of correspondences between RAILS
operands and mechanisms in the immune system. In addition,
the learning patterns of RAILS and the immune system are
closely aligned, as shown in Figure 7.

III. DETAILS ON RAILS WORKFLOW
Algorithm 1 shows the four-step workflow of RAILS.
We explain each step below.

A. SENSING
This step performs an initial discrimination between adver-
sarial and benign inputs to prevent the RAILS computation
from becoming overwhelmed by false positives, i.e., only
implementing the main steps of RAILS on suspicious inputs.
While there are many outlier detection procedures that could
be used for this step [9], [42], we can exploit the fact that the
DNN and kNN applied on hidden layers will tend to make
similar class predictions for benign inputs. Thus we propose
using an cross-entropy measure to generate an adversarial
threat score for each input x. In the main text results, we skip
the sensing stage since the major benefit from sensing is
providing an initial detection.We refer readers to Appendix E
for more details.

B. FLOCKING
The initial population from each class needs to be selected
with a certain degree of affinity measured using the hidden
representations in order to satisfy our hypothesis, as illus-
trated in Figure 7. By constructing class-wise k-Nearest
Neighbor (kNN) architecture, we find the kNN that have the
highest initial affinity score to the input data from each class
and each selected layer. Mathematically, we select

N c
l = {(x̂, yc)|Rc(x̂) ≤ k, (x̂, yc) ∈ Dc}

Given

A(fl; xci , x) ≤ A(fl; x
c
j , x)⇐ Rc(i) > Rc(j)

∀c ∈ [C], l ∈ L, ∀i, j ∈ [nc], (1)

where x is the input. L is the set of the selected layers. Dc
is the training data from class c and the size |Dc| = nc. Rc :
[nc]→ [nc] is a ranking function that sorts the indices based
on the affinity score. In the adaptive learning context, if the
memory database has been previously populated, flocking
will select the nearest neighbors using both the training data
and the memory data. The immune system leverages flocking
step to find initial B cells and form temporary structures
for affinity maturation [33]. Note that in RAILS, the kNN
setsN c

l are constructed independently for each class, thereby

ensuring that every class is fairly represented in the initial
population.

C. AFFINITY MATURATION (EVOLUTIONARY
OPTIMIZATION)
As flocking brings diversity to the label distribution of the
initial population, the affinity maturation step, in contrast,
promotes specificity towards the ground truth class. Here
we use evolutionary optimization to generate new exam-
ples (offspring) from the existing examples (parents) in the
population. The evolution happens within each class indepen-
dently, and new generated examples from different classes
are not affected by one another before the consensus stage.
The first generation parents in each class are the K nearest
neighbors found by (1) in the flocking step, where K is
the number of nearest neighbors. Given a total population
size TC , the 0-th generation is obtained by copying each
nearest neighbor T/K times with random mutations. Given
the population of class c in the (g−1)-st generationP (g−1)

c =

[xc(1), xc(2), · · · , xc(T )] ∈ Rd×T , the candidates for the g-th
generation are selected as

P̂ (g−1)
c = P (g−1)

c Z (g−1)
c , (2)

where P̂ (g−1)
c denotes the set of randomly selected repro-

ductions of the population at the previous generation g − 1.
These are computed before applying mutation and crossover
operations to populate the g-th generation P (g)

c . Z (g−1)
c ∈

RT×T is a binary selection matrix whose columns are inde-
pendent and identically distributed draws from Mult(1,Pc),
the multinomial distribution with probability vector Pc ∈
[0, 1]T . The process can also be viewed as creating new
nodes from existing nodes in a Preferential Attachment (PA)
evolutionary graph [43], where the details can be viewed in
Appendix D. After selection, RAILS generates new examples
through the operations ofmutation and cross-over, which will
be discussed in more detail later. After new examples are
generated, RAILS calculates each example’s affinity relative
to the input. The new examples are associated with labels that
are inherited from their parents, which always come from
the same class. According to our hypothesis in Section II,
examples inherited from parents of the ground truth class ytrue
have a higher chance of reaching high-affinity, and thereby
the population members with high-affinity are concentrating
about the input’s true class.

D. CONSENSUS
Consensus is responsible for the final selection and predic-
tions. In this step, RAILS selects generated examples with
high-affinity scores to be plasma data, and examples with
moderate-affinity scores are saved as memory data. The
selection is based on a ranking function.

Sopt = {(x̃, ỹ)|Rg(x̃) ≤ γ |P (G)
|, (x̃, ỹ) ∈ P (G)

}, (3)

where Rg : [|P (G)
|]→ [|P (G)

|] is the same ranking function
as Rc except that the domain is a set having cardinality equal
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to that of the final population P (G). γ is a proportionality
parameter and is selected as 0.05 and 0.25 for plasma data and
memory data, respectively. Note that the memory data can be
selected in each generation. For simplicity, we select memory
data only in last generation. Memory data will be saved in the
secondary database and used for model hardening.

Given that all examples in the population are associated
with a label inherited from their parents, RAILS usesmajority
voting of the plasma data for prediction of the class label of x.

Algorithm 1 Robust Adversarial Immune-Inspired Learning
System (RAILS)
Require: Test data point x; Training dataset Dtr =

{D1,D2, · · · ,DC }; Number of ClassesC ; ModelM with
feature mapping fl(·), l ∈ L; Affinity function A.
First Step: Sensing

1: Check the threat score given by an outlier detection strat-
egy to detect the threat of x.
Second Step: Flocking

2: for c = 1, 2, . . . ,C do
3: In each layer l ∈ L, find the k-nearest neighbors N c

l
of x in Dc by ranking the affinity score.

4: end for
Third Step: Affinity Maturation

5: For each layer l ∈ L, do
6: Generate P (0)

c through mutating each of x′ ∈ N c
l T/K

times, ∀c ∈ [C].
7: for g = 1, 2, . . . ,G do
8: for t = 1, 2, . . . ,T do
9: Select data-label pairs (xc, yc), (x′c, yc) from P (g−1)

c

based on P(g−1)
c .

10: xos = Mutation
(
Crossover(xc, x′c)

)
; P (g)

c ←−

(xos, yc).
11: end for
12: end for
13: Calculate the affinity score A(fl;P (G), x),∀c ∈ [C] given

P (G)
= P (G)

1
⋃
· · ·
⋃

P (G)
C .

14: end For
Fourth Step: Consensus

15: Select the top 5% as plasma data S lp and the top 25% as
memory data S lm based on the affinity scores, ∀l ∈ L;
Obtain the prediction y of x using the majority vote of
the plasma data.

16: Output: y, the memory data Sm = {S1m, S
2
m, · · · , S

|L|
m }

E. COMPUTATIONAL COST
The computational cost of RAILS is dominated by the flock-
ing and affinity maturation stage. kNN structure construction
in flocking is a fixed setup cost that can be handled off-line
with fast approximate kNN approximation [44], [45]. There
are three strategies for reducing the computational cost of the
affinity maturation stage. First, the evolutionary optimization
can be replaced by a mean field approximation. Second, par-
allelization can be used to accelerate the computations since

each sample is generated and utilized separately. Third, one
can use amore stringent false positive threshold in the sensing
step, thereby reducing the number of false positives resulting
in a reduction in the downstream computational burden.More
discussion can be viewed in Appendix D.

F. OPERATIONS IN THE EVOLUTIONARY OPTIMIZATION
Three operations support the creation of new examples: selec-
tion, cross-over, and mutation. The selection operation is
shown in (2). We compute the selection probability for each
candidate through a softmax function.

P(xi) = Softmax(A(fl; xi, x)/τ )

=
exp (A(fl; xi, x)/τ )∑
xj∈S exp (A(fl; xj, x)/τ )

, (4)

where S is the set of data points and xi ∈ S. τ > 0 is the
sampling temperature that controls sharpness of the softmax
operation. Given the selection probability P, defined on the
current generation in (4), the candidate set {(xi, yi)}Ti=1 for the
next generation is randomly drawn (with replacement).

The cross-over operator combines two parents xc and x′c
from the same class, and generates new offspring by ran-
domly selecting each of its elements (pixels) from the cor-
responding element of either parent. Mathematically,

x′os = Crossover(xc, x′c)

=

{
x(i)c with prob A(fl ;xc,x)

A(fl ;xc,x)+A(fl ;x′c,x)
,

x′(i)c with prob A(fl ;x′c,x)
A(fl ;xc,x)+A(fl ;x′c,x)

∀i ∈ [d], (5)

where i represents the i-th entry of the example and d is
the dimension of the example. The mutation operation ran-
domly and independently mutates an offspring with prob-
ability ρ, adding uniformly distributed noise in the range
[−δmax,−δmin]∪[δmin, δmax]. The resulting perturbation vec-
tor is subsequently clipped to satisfy the domain constraint
that examples lie in [0, 1]d .

xos = Mutation(x′os) = Clip[0,1]
(
x′os

+1[Bernoulli(ρ)]u([−δmax,−δmin] ∪ [δmin, δmax])
)
, (6)

where 1[Bernoulli(ρ)] takes value 1 with probability ρ and value
0 with probability 1− ρ. u([−δmax,−δmin] ∪ [δmin, δmax]) is
the vector in Rd having i.i.d. entries drawn from the punc-
tured uniform distribution U([−δmax,−δmin] ∪ [δmin, δmax]).
Clip[0,1](x) is equivalent to max(0,min(x, 1)).

IV. EXPERIMENTAL RESULTS
We conduct experiments in the context of image clas-
sification using several benchmark image classification
datasets. We compare RAILS with Convolutional Neural
Network (CNN) Classification and Deep k-Nearest Neigh-
bors (DkNN) Classification [17] on the MNIST [46],
SVHN [47], CIFAR-10 and CIFAR-100 [48] datasets.We test
our framework using a four-convolutional-layer neural net-
work for MNIST, VGG16 [49] for the SVHN dataset,
and adversarially trained VGG16 for the CIFAR-10 and
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CIFAR-100 datasets. We refer readers to Appendix B for
more details of the datasets, models, and parameter selection.
In addition to the benign test examples, we also generate
an equal number of adversarial examples generated from
adversarial attacks using MNIST, SVHN, CIFAR-10, and
CIFAR-100 data. The attack strength is ε = 40/60 for
MNIST, and ε = 8 for SVHN, CIFAR-10, CIFAR-100
by default. Performance comparisons are based on stan-
dard accuracy (SA) evaluated using benign (unperturbed)
test examples and robust accuracy (RA) evaluated using the
adversarial (perturbed) test examples. Besides the default `∞
norm PGD attack [11], we also implement seven other attacks
(Figure 1 and Table 3).

FIGURE 5. RAILS has fewer incorrect predictions for those data that
DkNN gets wrong. Confusion Matrices of adversarial examples
classification in Conv1 and Conv2 (RAILS vs. DkNN).

A. PERFORMANCE IN SINGLE LAYERS
We first test RAILS in a single layer of the CNN model
and compare the obtained accuracy with the results from the
DkNN. Table 1 shows the comparisons in the input layer,
the first convolutional layer (Conv1), and the second con-
volutional layer (Conv2) on MNIST. One can see that for
both standard accuracy and robust accuracy, RAILS performs
better than the DkNN in the hidden layers and achieve better
results in the input layer. The input layer results indicate that
RAILS can also outperform supervised learning methods like
kNN. The confusion matrices in Figure 5 show that RAILS
has fewer incorrect predictions for those data that DkNN gets
wrong. Each value in Figure 5 represents the percentage of
intersections of RAILS (correct or wrong) andDkNN (correct
or wrong).

B. RAILS LEARNING PROCESS
Flocking provides a balanced initial population while affin-
ity maturation within RAILS creates new examples in each

TABLE 1. RAILS outperforms DkNN on single layers. Standard Accuracy
(SA)/Robust Accuracy (RA) performance of RAILS versus DkNN in single
layer (MNIST).

generation. To better understand the capability of RAILS,
we can visualize the changes of some key indices during
runtime.

1) VISUALIZATION OF RAILS EVOLUTIONARY PROCESS
Picking the top 5% data points with the highest affinity
in each generation, Figure 6 shows the evolution over ten
generations of RAILS samples of the population (B-cells)
proportion and (exponentiated) affinity relative to two clean
(non-adversarial) input examples taken from CIFAR-10.
RAILSmakes the correct ‘‘bird’’ predictions while the DkNN
makes incorrect predictions for both examples. The second
column depicts the proportion of the true class in the selected
population of each generation. Data from the true class
occupies the majority of the population when the generation
number increases, which indicates that RAILS can obtain
a correct prediction and a high confidence score simultane-
ously. Meanwhile, affinity maturation over multiple genera-
tions yields increasing affinity within the true class, as shown
in the third column. To visualize changes in feature distribu-
tion during the affinity maturation stage, we show in Figure 8
the two-dimensional t-distributed stochastic neighbor embed-
ding (t-SNE) of the feature representations of adversarial
CIFAR-10 inputs (antigens) and the associated populations
(B-cells). The features shown in the figure are those of con-
volutional layer three, and are representative of the feature
behavior at other layers. As shown in Figure 8, the antigen is
misclassified and B-cells are uniformly spread over the fea-
ture space at the beginning of the affinity maturation. As the
affinity maturation process progresses, the antigen’s ground
truth class B-cell population (colored in blue) converges to a
cluster that covers the antigen.

2) IN-VITRO B-CELL EXPERIMENT CONFIRMS RAILS
EMULATION
To demonstrate that the proposed RAILS computational sys-
tem captures important properties of the actual (in-vitro)
immune system we compare the learning curve of RAILS
to the learning curve of B-cell antigen recognition (see
Appendix C for a description of the biological experiment
we performed). For the biological experiment the measured
affinity between a population of actual B-cells and an antigen
is obtained experimentally over time (several hours). For
RAILS each test input (potentially the adversarial example)
is treated as an antigen and the affinity is computed as RAILS
iterates over time. Figure 7 shows that both the in-vitro
immune system and RAILS have similar learning patterns.
One can also see that the affinity increases again after the
decrease, indicating both the immune system and RAILS
can escape from a local optimal under strong attacks. The
difference between the green and red curves is that the initial
population for the red curve is found based on another test
input (antigen), which has lower correlation to the current
input (antigen). The non-convergence of the red curve indi-
cates that the initial population should be selected close to
the input, and the flocking using kNN search emulated the
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FIGURE 6. Proportion and affinity of the population from the ground truth class of input
with respect to the generation number (RAILS on CIFAR-10). We plot all curves by
selecting data points with affinity in the top 5% of all classes’ data points in each
generation. (1) Second column: Data from the true class occupies the majority of the
population when the generation number increases (2) Third column: Affinity maturation
over multiple generations produces increased affinity (after a temporary decrease in the
searching phase) within the true class.

FIGURE 7. RAILS emulates the learning patterns of the biological
adaptive immune response. Correspondence between learning curves of
a natural immune system in vitro experiment (left) and the RAILS
computational experiment (right). Adversarial input in RAILS corresponds
to antigen in the immune system. When the initial candidates are
selected based on the input (the green lines), RAILS and the immune
system can both jump out of local optimal and find the correct solution.
When the candidates are selected based on a different input (the red
dashed lines), neither responses converge.

natural flocking process. We refer readers to Appendix C for
more details.

C. OVERALL PERFORMANCES IN DIFFERENT SCENARIOS
1) DEFENSE AGAINST PGD ATTACK FOR CIFAR-10 AND
SVHN
We compare RAILS with CNN and DkNN in terms of stan-
dard accuracy (SA) and robust accuracy (RA). The results
are shown in Table 2. On MNIST with ε = 60, one
can see that RAILS delivers a 5.62% improvement in RA
over DkNN without appreciable loss of SA. On CIFAR-10
(SVHN), RAILS leads to 10.32% (12.5%) and 19.4% (46%)
robust accuracy improvements compared to DkNN and CNN,
respectively. We refer readers to Appendix F for more results
under different strengths and types of attacks. Note that there
is no competitive relationship between RAILS and robust

TABLE 2. RAILS achieves higher robust accuracy (RA) at small cost of
standard accuracy (SA) for all three datasets (MNIST, SVHN and
CIFAR-10) as compared to CNN and DkNN.

training since RAILS is a general method that can improve
any models’ robustness, even a robust trained model.

2) DEFENSE AGAINST EIGHT DIFFERENT ATTACK TYPES
Here we show the results of RAILS defending against
eight types of attacks: (1,2) `∞-PGD attack and `2-PGD
attack [11] (3) Fast Gradient Sign Method (FGSM) [5], a fast
alternative version of PGD (4) Square Attack (Sq-Attack)
[28], a type of score-based black-box attack (5) Boundary
Attack [31], a type of decision-based black-box attack (6)
AutoAttack [30], a multi-level white-box attack (7) Adversar-
ial Patch (Adv-P) [29], an attack with unified perturbations
across different inputs (8) a (customized) ASK-Attack that is
directly applied on the flocking step [32]. We refer readers
to Appendix B for details of the threat models. The results
of RAILS defending against these attacks can be viewed
in Figure 1 and Table 3. On CIFAR-10, RAILS improves
the robust accuracy of CNN (DkNN) on `∞-PGD/`2-PGD/
FGSM/Sq-Attack/Boundary Attack/AutoAttack/Adv-P/
ASK-Attack by 19.43%/14.8%/11.18%/11.5%/32.79%/
(22.58%/22.36%−/11.81%10.31%/10.46%/6.24%/3.2%/
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FIGURE 8. Visualization of the evolution of B-cell feature samples over several generations of the the RAILS affinity maturation process.
Feature representations of an adversarial CIFAR-10 input (antigen) and the RAILS selected feature populations of B-cells are mapped to a
two-dimensional space (t-SNE). The random initialization of the population displays the B-cells as uniformly distributed over feature space. After
six generations the affinity maturation process produces B-cells that cluster around the antigen and correctly identify its true class.

6.4%/11.07% − /10.8%/7.7%). More experimental results
can be found in Appendix F.

TABLE 3. RAILS achieves higher robust accuracy (RA) under eight types
of attacks as compared to CNN and DkNN.

We further evaluate RAILS on CIFAR-100 under the three
most powerful attacks taken from Table 3: `∞-PGD; AutoAt-
tack; and Boundary Attack. The standard accuracy of RAILS,
DkNN, and CNN are 61.03%, 62.92%, and 65.57%. The
results of defending against the three types of attacks on
CIFAR-100 are shown in Table 4. One can see that RAILS
outperforms adversarially trained CNN and DkNN.

3) DEFENSE AGAINST HUMAN-PERCEPTIBLE
DISTURBANCES
We test RAILS against disturbances visible to the naked
eye using CIFAR-10 data. We consider the `∞-PGD attack
with ε = 28. Figure 9 shows the benign examples and

TABLE 4. RAILS achieves higher robust accuracy (RA) than DkNN and
CNN on CIFAR-100 under the three attacks.

their adversarial counterparts with large disturbances. The
differences can be clearly observed. Under the human per-
ceptible attack, the accuracy for RAILS, DkNN, and the
adversarially trained CNN are 33.26%, 19.53%, and 0%. The
results demonstrate that RAILS can effectively defend against
human perceptible perturbations as compared with DkNN
and CNN.

FIGURE 9. Two CIFAR-10 examples of human perceptible perturbations.
The adversarial examples are generated by `∞-PGD attack with ε = 28.

4) DIVERSITY VERSUS SPECIFICITY
The DkNN finds a group of feature space k-nearest neighbors
that at each layer classify an input sample in a single shot.
In contrast, starting from a initial uniform label distribution at
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each layer, RAILS constructs a classifier after maturation of
several generations of feature representing B-cells using an
evolutionary optimization process. Results in Table 2 show
that evolving a population of features from highly diverse
to highly specific provides additional robustness with little
sacrifice on benign accuracy.

5) ABLATION STUDY
Using the CIFAR-10 dataset and the third convolutional layer
of a VGG16 model, we perform an ablation study to clar-
ify the relative influence of different RAILS components
on performance. Our findings are summarized as follows:
(i) increasing the number of nearest neighbors in a certain
range improves performance; (ii); higher mutation probabil-
ity increases robust accuracy (iii); the magnitude of mutation
is sensitive to the input data, but may be optimized to increase
robust accuracy. We refer readers to Appendix F for more
details on the ablation study. We also show that when we turn
off the affinity maturation stage, the robust accuracy drops
from 59.2% to 55.65% (on 2000 test examples), indicating
the importance of including the affinity maturation step in
RAILS.

6) SINGLE-STAGE ADAPTIVE LEARNING
In the previous sections we demonstrated that static learn-
ing is effective in predicting the class of current adversarial
inputs. Here we show that RAILS can be implemented with
single-stage adaptive learning (SSAL) to further improve
accuracy and robustness. While the idea is not pursued in
this paper, our SSAL results suggest that RAILS may be
gainfully extended to the on-line learning setting. SSAL is
implemented as follows. We first train a RAILS classifier
on the training data as described in previous sections. Then
we used RAILS to generate 3000 memory data (B-cells)
when a subset of test data taken from MNIST was used as
input to the initially trained RAILS. We then merged this
new data with the population of training data, creating an
augmented training set. Finally, we randomly selected and
adversarially modified another 1000 test samples of MNIST,
and, using RAILS with its expanded training data, evaluated
its adversarial classification accuracy. Table 5 shows that the
SSAL improves RA of DkNN by 2.3% with no SA loss using
by augmenting the training data with only 3000 memory data
samples (a total of 5% increase of the training data).

TABLE 5. When implemented with memory data and single-stage
adaptive learning (SSAL), RAILS hardens DkNN against future attacks.

V. CONCLUSION
Inspired by the immune system, we proposed a new defense
framework for deep learning models. The proposed Robust
Adversarial Immune-inspired Learning System (RAILS) has

a one-to-one mapping to a simplified architecture immune
system and its learning behavior aligns with in vitro bio-
logical experiments. RAILS incorporates static learning and
adaptive learning, contributing to a robustification of pre-
dictions and dynamic model hardening, respectively. The
experimental results demonstrate the effectiveness of RAILS.
We believe this work is fundamental and delivers valuable
principles for designing robust deep models. In future work,
we will dig deeper into the mechanisms of the immune sys-
tem’s adaptive learning (life-long learning) and covariate shift
adjustment, which will be consolidated into our computa-
tional framework.

APPENDIX A
A ONE-TO-ONE MAPPING FROM THE IMMUNE SYSTEM
TO RAILS
Table 6 provides a detailed comparison between the Immune
System and RAILS. The top part shows the detailed expla-
nations of some technical terms. The bottom part shows the
four-step process of the two systems.

APPENDIX B
EXPERIMENTAL PARAMETER SETTINGS
A. DATASETS AND MODELS
We test RAILS on three public datasets: MNIST [46],
SVHN [47], CIFAR-10 and CIFAR-100 [48]. The MNIST
dataset is a 10-class handwritten digit database consisting
of 60000 training examples and 10000 test examples. The
SVHN dataset is another benchmark that is obtained from
house numbers in Google Street View images. It contains
10 classes of digits with 73257 digits for training and
26032 digits for testing. CIFAR-10 (CIFAR-100) is a more
complicated dataset that consists of 60000 (60000) colour
images in 10 (100) classes. There are 50000 training images
and 10000 test images. We use a four-convolutional-layer
neural network for MNIST, and VGG16 [49] for SVHN,
CIFAR-10, and CIFAR-100. ForMNIST and SVHN, we con-
duct the affinity maturation in the inputs. Compared with
MNIST and SVHN, features in the input images of CIFAR-10
and CIFAR-100 are more mixed and disordered. To reach
a better performance using RAILS, we use adversarially
trained models on ε = 4 and conduct the affinity maturation
in layer one instead of the input layer. We find that both ways
can provide better feature representations for CIFAR-10 and
CIFAR-100, and thus improve RAILS performance.

B. THREAT MODELS
Though out this paper, we consider eight different types
of attacks: (1) `∞-Projected Gradient Descent (PGD)
attack [11] - We implement 20-step PGD attack for MNIST,
and 10-step PGD attack for SVHN and CIFAR-10. The attack
strength is ε = 40/60/76.5 for MNIST, ε = 8 for SVHN,
and ε = 8/16 for CIFAR-10. (2) `2-PGD attack - The
attack strength is ε = 127.5 for CIFAR-10 (3) Fast Gradient
Sign Method [5] - The attack strength is ε = 76.5 for
MNIST, and ε = 4/8 for SVHN and CIFAR-10. (4) Square
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TABLE 6. A one-to-one mapping from the immune system to RAILS.

Attack [28] - We implement 50-step attack for MNIST, and
30-step attack for CIFAR-10. The attack strength is ε =
76.5 forMNIST, and ε = 20/24 for CIFAR-10. (5) Boundary
Attack [31] - We set the maximum iteration to be 500 for
CIFAR-10 experiments. (6) AutoAttack [30] - The attack
strength is ε = 8 and the maximum iteration is set to be
200 for CIFAR-10 experiments. (7) Adversarial Patch [29]
- We use patch ratio= 0.1. (8) ASK-Attack [32] - We imple-
ment 20-step attack for CIFAR-10.

C. PARAMETER SELECTION
By default, we set the size of the population T = 100 and
the mutation probability ρ = 0.15. In Figure 6, we set T =
100 to obtain a better visualization. The maximum number
of generations is set to G = 50 for MNIST, and G = 10 for
CIFAR-10 and SVHN. When the model is large, selecting
all the layers would slow down the algorithm. We use all
four layers for MNIST. For CIFAR-10 and SVHN, we test
on a few (20) validation examples and evaluate the kNN
standard accuracy (SA) and robust accuracy (RA) on each
layer. We then select layer three and layer four with SA and
RA over 40%.

1) MUTATION RANGE
The mutation range selection is related to the dataset. For
MINST whose features are well separated in the input, the
upper bound of the mutation range could be set to a relatively
large value. For the datasets with low-resolution and sensitive
to small perturbations, we should set a small upper bound of
the mutation range. We also expect that the mutation could
bring enough diversity in the process. Therefore, we will pick
a lower bound of the mutation range. We set the mutation
range parameters to δmin = 0.05(12.75), δmax = 0.15(38.25)
for MNIST. Considering CIFAR-10 and SVHN are more

sensitive to small perturbations, we set the mutation range
parameters to δmin = 0.005(1.275), δmax = 0.015(3.825).

2) SAMPLING TEMPERATURE
Note that the initial condition found for adversarial examples
could be worse than benign examples. It is still possible for
examples (initial B-cells found in the flocking step) of wrong
classes dominating the population affinity at the beginning.
To reduce the gaps between the high-affinity examples and
low-affinity examples, we use the sampling temperature τ to
control the sharpness of the softmax operation. The principle
of selecting τ is to make sure that the high-affinity examples
in one class do not dominate the affinity of the whole pop-
ulation at the beginning. We thus select τ to make sure that
the top 5% of examples are not from the same class. We find
that our method works well in a wide range of τ once the
principle is reached. For MNIST, the sampling temperature
τ in each layer is set to 3, 18, 18, and 72. Similarly, we set
τ = 1/10 and τ = 300 for the selected layers for CIFAR-10
and SVHN, respectively.

3) THE HARDWARE AND OUR CODE
We apply RAILS on one Tesla V100 with 64GBmemory and
2 cores. The code is written in PyTorch.

APPENDIX C
RAILS EMULATION OF THE NATURAL IMMUNE SYSTEM
A. RAILS MIMICS THE BIOLOGICAL LEARNING CURVE
To demonstrate that the proposed RAILS computational
system captures important properties of the immune sys-
tem, we compare the learning curves of the two systems
in Figure 7. In RAILS, we treat test data (potentially the
adversarial example) as an antigen. Affinity in both systems
measures the similarity between the antigen sequence and a
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potential matching sequence. The green and red curves depict
the evolution of the mean affinity between the B-cell popula-
tion and the antigen. The candidates selected in the flocking
step (kNN) are close to a particular antigen. Two tests are
performed to illustrate the learning curves when the same
antigen (antigen 1) or a very different antigen (antigen 2) is
presented during the affinity maturation step.When antigen 1
is presented (green curves), Figure 7 shows that both the
immune system (left panel) and RAILS have learning curves
that initially increase, then decrease, and then increase again.
This phenomenon indicates a two-phase learning process, and
both systems can escape from local optimal points. On the
other hand, when the different antigen 2 is presented, the
flocking candidates converge more slowly to a high affinity
population during the affinity maturation process (dashed
curves).

B. IN-VITRO IMMUNE RESPONSE EXPERIMENT
1) DETAILS ON IN-VITRO EXPERIMENTS IN FIGURE 7
We performed in-vitro experiments to evaluate the adaptive
immune responses of mice to foreign antigens. These mice
are engineered in a way which allows us to image their B cells
during affinity maturation in an in-vitro culture. Using fluo-
rescence of B cells, we can determine whether the adaptive
immune system is effectively responding to an antigen, and
infer the affinity of B cells to the antigen. In this experiment,
we first immunized a mouse using lysozyme (Antigen 1).
We then challenged the immune system in two ways:
(1) reintroducing lysozyme and (2) introducing another very
different antigen, ovalbumin (Antigen 2). We then measured
the fluorescence of B cells in an in-vitro culture for each of
these antigens, which we use as a proxy to estimate affinity.
We use five fluorescence measurements over ten days to
generate the affinity curves in Figure 7 (left). When plotting,
we use a spline interpolation in MATLAB to smooth the
affinity curves. For full experimental details, please refer to
Figures 10, 11, and the following three sections.
In-vitro culture of Brainbow B cells. For the in

vitro culture of B cells, splenic lymphocytes from
Rosa26Confetti+/+; AicdaCreERT2+/- mice were har-
vested and cultured following protocol from [50]. Mice were
individually immunizedwith lysozyme and ovalbumin. Three
days post-immunization, the mice were orally administered
with Tamoxifen (50 µl of 20mg/ml in corn oil) and left
for three days to activate the Cre-induced expression of
confetti colors in germinal center B cells. Six days post-
immunization, whole lymphocytes from spleenwere isolated.
3 × 105 whole lymphocytes from spleen were seeded to a
single well in a 96 well dish along with 3 × 104 dendritic
cells derived from bone marrow hematopoietic stem cells
for in vitro culture. The co-culture was grown in RPMI
medium containing methyl cellulose (R&D systems, MN)
supplemented with recombinant IL-4 (10 ng/ml) from, LPS
(1 µg/ml), 50 µM 2-mercaptoethanol, 15% heat inactivated
fetal calf serum, ovalbumin (10µg/ml) for ovalbumin specific

B cells and hen egg white lysozyme (10 µg/ml) for lysozyme
specific B cells. Antigens were also added vice-versa for non-
specific antigen control. The media was changed every two
days. The cultures were imaged every day for 14 days.

Preparation of differentiated dendritic cells from bone
marrow hematopoietic stem cells. Bone marrow cells
from femurs and tibiae of C57BL/6 mice was harvested,
washed and suspended in RPMI media containing GM-CSF
(20ng/ml), (R&D Systems, MN), 2mM L-glutamine, 50 µM
2-mercaptoethanol and 10% heat inactivated fetal calf serum.
On day two and four after preparation, 2 mL fresh complete
medium with (20ng/ml) GM-CSF were added to the cells.
The differentiation of hematopoietic stem cells into immature
dendritic cells was completed at day seven.

Cell imaging. Confocal images shown in Figure 11 were
acquired using a Zeiss LSM 710. The Brainbow 3.1 fluores-
cence was collected at 463-500 nm in Channel 1 for ECFP
(excited by 458 laser), 416-727 nm in Channel 2 for EGFP
and EYFP (excited by 488 and 514 lasers, respectively), and
599-753 nm in Channel 3 for mRFP (excited by 594 laser).
Images were obtained with 20× magnification.

C. IN-SILICO RAILS EXPERIMENT
1) DETAILS ON RAILS EXPERIMENTS IN FIGURE 7
Similar to the in-vitro experiments, we test RAILS on two
different inputs from CIFAR-10, as shown in the right panel
of the conceptual diagram Figure 10 (cat as Antigen 1 and
deer as Antigen 2). The candidates are all selected in the
flocking step of antigen 1 (A1). Two tests are performed to
illustrate the different responses when the same antigen (A1)
or a very different antigen (A2) is presented during the affinity
maturation step.

We first apply RAILS on Antigen 1 (A1) and obtain the
average affinity of the true class as well as the initial B-cells,
i.e. the nearest neighbors from all classes. The affinity vs
generation curve is shown in the green line in the right panel
of Figure 7. One can clearly see the learning pattern. And
finally, the solution is reached with a high affinity. Then we
apply the initial B-cells obtained from A1 to Antigen 2 (A2).
The results show that A2 cannot reach the solution by using
the given initial B-cells, as shown by the red line in the right
panel of Figure 7.

APPENDIX D
ADDITIONAL DETAILS ON RAILS
A. COMPUTATIONAL COST
The RAILS prototype implemented in this paper has a rela-
tively high computational cost, primarily due to the need to
generate and select generations of in-silico B-cells using the
genetic algorithm. Specifically, the average prediction time
per sample is less than 0.1sec on CIFAR-10 with population
size 100 and 20 generations. Note that all of our reported
RAILS experiments were performed on a single GPU. RAILS
speed can be dramatically accelerated by using multiple
GPUs. We are currently investigating fast approximations to
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FIGURE 10. The conceptual diagram of in-vitro immune response (Left) and RAILS response (Right): The candidates are
selected in the flocking step of antigen 1 (A1). Two tests are performed to illustrate the different responses when the
same antigen (A1) or a very different antigen (A2) is presented during the affinity maturation step. In RAILS, we treat
test data (cat and deer) as antigens. The solution can be reached when A1 is presented. There is no solution when A2 is
presented.

FIGURE 11. In-vitro experimental results showing importance of antigen affinity in robustness of adaptive immune response. The
figure shows images of the B-cell proliferation (A1, B1, C1) and B-cell fold-change curves (A2, B2, C2) over time for three initial
antigen imunization types (Ovalbumin-injected mice, Lysozyme injected mice, and un-immunized) and three antigen
post-imunization treatments (no-antigen, lysozyme antigen, Ovalbumin antigen) applied 6 days later. (A2 and B2) Ovalbumin and
Lysozyme antigens produce similar adaptive immune responses for those mice previously immunized with either antigen while
they produce no adaptive immune response for mice that have not been immunized. (C2) The graphs show clearly that
proliferation of B-cells in the adaptive immune response is strongest when the lymphocytes are re-exposed to the same antigen
as in the immunization but still elicits an adaptive response when exposed to a similar but non-identical antigen. The decrease in
adaptive response is inversely proportional to the similarity (affinity) between the antigens.

the genetic algorithm solution used by our prototype RAILS
implementation.

B. RELATIONS TO PREFERENTIAL ATTACHMENT
The process of selection can also be viewed as creating new
nodes from existing nodes in a Preferential Attachment (PA)
evolutionary graph generation process [43], where the prob-
ability of a new node linking to node i is

5(ki) =
ki∑
j kj
, (7)

and ki is the degree of node i. In PA models new nodes
prefer to attach to existing nodes having high vertex degree.
In RAILS, we use a surrogate for the degree, which is the

exponentiated affinity measure, and the offspring are gener-
ated by parents having high degree.

C. EARLY STOPPING CRITERION
Considering the fast convergence of RAILS, one practical
early stopping criterion is to check if a single class occupies
most of the high-affinity population for multi-generation,
e.g., checking the top 5% of the high-affinity population.
We empirically find that it takes less than 5 iterations to
convergence for most of the inputs fromMNIST (CIFAR-10).

D. RAILS IMPROVES ROBUSTNESS OF ALL MODELS
RAILS is a general framework that can be applied to any
model. Specifically, we remark that there is no competitive
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relationship between RAILS and robust training since RAILS
can improve all models’ robustness, even for the robust
trained model. Moreover, RAILS can reach higher robustness
based on a robust trained model.

APPENDIX E
A SIMPLE SENSING STRATEGY
Sensing in the immune system aims to detect the self and non-
self pieces, while RAILS leverages sensing to provide initial
detection of adversarial examples. Sensing can also prevent
the RAILS computation from becoming overwhelmed by
false positives, i.e., recognizing benign examples to adver-
sarial examples. Once the input is detected as benign, there is
no need to go through the following process, and the neural
network can directly obtain the predictions. The sensing step
provides the initial discrimination between adversarial and
benign inputs, and we develop a simple strategy here.

The assumption we make here is that benign examples
have more consistency between the features learned from
a shallow layer and the DNN prediction compared with
adversarial examples. This consistency can be measured by
the cross-entropy between the DNN and layer-l kNN pre-
dicted class probability score. Specifically, we have the cross-
entropy (adversarial threat score) for each input x in the
following form

ce(x)l = −
C∑
c=1

Fc(x) log vlc (8)

where Fc denotes the neural network prediction score of
the c-th class. The prediction score is obtained by feeding the
output of the neural network to a softmax operation. vlc is the
c-th entry of the normalized kNN vector in layer-l, which is
defined as follows

vlc =
rc
k
=
|{x̂|x̂ ∈ Ql ∩Dc}|

k
(9)

whereDc represents the training data belonging to class c.Ql
denotes the k-nearest neighbors of x in all classes by ranking
the affinity score A(fl; xj, x).

FIGURE 12. Adversarial threat score distributions of benign examples and
adversarial examples: There are more adversarial examples with larger
ce2 (ce3) compared to benign examples. The results suggest that a large
number of benign examples could be separated from adversarial
examples, and thus can prevent the RAILS computation from becoming
overwhelmed by false positives.

All the sensing experimental results shown below are
obtained on CIFAR-10. We first compare the adversarial

threat score distributions of benign examples and adversarial
examples on layer two and layer three in Figure 12. We use
1400 benign examples for layer two and layer three. The
adversarial examples are all successful attacks. One can see
that there are more adversarial examples with larger ce2 (ce3)
compared to benign examples. The results suggest that a large
number of benign examples could be separated from adver-
sarial examples, and thus can prevent the RAILS computation
from becoming overwhelmed by false positives.

FIGURE 13. Receiver Operating Characteristic (ROC) curves of the
adversarial threat scores for benign examples and adversarial examples:
The True Positive Rate (TPR) represents the adversarial examples
successfully detected rate. The False Positive Rate (FPR) represents the
rate of benign examples accidentally been detected as adversarial
examples. The Area Under the Curve (AUC) is 0.70 and 0.77 for layer two
and layer three.

Figure 13 shows the Receiver Operating Characteris-
tic (ROC) curves of the adversarial threat scores for benign
examples and adversarial examples. Figure (a) and (b) depict
the ROC curves in layer two and layer three, respectively. The
True Positive Rate (TPR) represents the adversarial examples
successfully detected rate. The False Positive Rate (FPR) rep-
resents the rate of benign examples accidentally been detected
as adversarial examples. The Area Under the Curve (AUC)
is 0.70 and 0.77 for layer two and layer three. Note that we
care more about TPR than FPR since it has no side effect
on RAILS accuracy if we detect a benign example to an
adversarial example. Our goal is to select a relatively low FPR
while still maintaining a high TPR. For example, we could
keep a 95% TPR with 56% FPR using a threshold 0.4 in layer
three.

The details about the sensing algorithm are shown in
Algorithm 2. We will select a threshold κ such that
x is treated as benign example (adversarial example) if
ce(x) ≤ κ (ce(x) > κ).
We then selectLs to only include layer three, and apply the

threshold of 0.4 in the sensing step on CIFAR-10. The results
show that the false positive rate can be reduced by 40%, while
the SA remains the same and the RA only decreases 0.2%.

APPENDIX F
ADDITIONAL EXPERIMENTS
A. ADDITIONAL COMPARISONS ON MNIST
Figure 14 provides the confusion matrices for benign exam-
ples classifications and adversarial examples classifications
in Conv1 and Conv2 when ε = 60. The confusion matrices
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Algorithm 2 Sensing: Adversarial Example Detection
Input: Test data point x; Training dataset Dtr =

{D1,D2, · · · ,DC }; Number of Classes C ; Model F with
feature mapping Fl(·) in layer l, l ∈ Ls; Affinity function
A; A preset threshold κ
for all layer l ∈ Ls in parallel do
Find the k-nearest neighbors Ql of x in all classes by
ranking the affinity score A(fl; xj, x).
Obtain the normalized vector vl =

(r1, r2, · · · , rC )/k, rc = |{x̂|x̂ ∈ Ql ∩Dc}|.
Obtain the softmax prediction vector (F(x)).
Calculate the cross entropy ce(x)l =

−
∑C

c=1 Fc(x) log v
l
c.

end for
if 1
|Ls|

∑
l∈Ls

ce(x) > κ then
x is a potential adversarial example and return IsAdv =
1.

else
x is benign and return the prediction argmaxc Fc(x)

end if

in Figure 14 show that RAILS has fewer incorrect predictions
for those data that DkNN gets wrong. Each value in Figure 14
represents the percentage of intersections of RAILS (correct
or wrong) and DkNN (correct or wrong).

In Table 7, we provide the experimental results with
Square Attack [28] (a black-box attack) showing that RAILS
improves the robust accuracy of DkNN by 1.35% (11% attack
success rate) on MNIST with ε = 76.5.

FIGURE 14. RAILS has fewer incorrect predictions for those data that
DkNN gets wrong. Confusion Matrices of adversarial examples and
benign examples classification in Conv1 and Conv2 (RAILS vs. DkNN
ε = 60).

Figure 15 shows the confusion matrices of the overall
performance when ε = 60. The confusion matrices indicate
that RAILS’ correct predictions agree with a majority of
DkNN’s correct predictions and disagree with DkNN’swrong
predictions.

We also show the SA/RA performance of RAILS under
PGD attack and Fast Gradient Sign Method (FGSM) when

TABLE 7. RAILS improves the robust accuracy of DkNN by 1.35%
(11% attack success rate) on MNIST with ε = 76.5.

TABLE 8. RAILS outperforms DkNN and CNN on defending PGD attack
with strength ε = 8 and ε = 16 on CIFAR-10. The difference of robust
accuracy (RA) between RAILS and DkNN increases when ε increases,
indicating that RAILS can defend stronger attacks.

TABLE 9. RAILS outperforms DkNN and CNN on defending FGSM attacks
with strength ε = 8 and ε = 16 on CIFAR-10.

TABLE 10. RAILS achieves higher robust accuracy (RA) than DkNN on
CIFAR-10 under Square Attack [28] with ε = 20 and ε = 24.

TABLE 11. RAILS achieves higher robust accuracy (RA) than DkNN on
CIFAR-10 under a (customized) ASK-Attack with ε = 8. ASK-Attack is
applied on different layers.

FIGURE 15. RAILS has fewer incorrect predictions for those data that
DkNN gets wrong. Confusion Matrices of adversarial examples and
benign examples classification (RAILS vs. DkNN - ε = 60).

ε = 76.5. The results in Table 12 indicate that RAILS can
reach higher RA than DkNN with close SA.

B. ADDITIONAL COMPARISONS ON CIFAR-10
In this subsection, we test RAILS on CIFAR-10 under PGD
attack and FGSM with attack strength ε = 8/16. The results
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TABLE 12. RAILS can reach higher robust accuracy (RA) than DkNN with
similar standard accuracy (SA) on defending PGD attack and FGSM
(ε = 76.5) on MNIST.

are shown in Figure 8 and Figure 9. RAILS outperforms
DkNN and CNN on different attack types and strengths.
We also find that the difference of RA between RAILS and
DkNN increases when ε increases, indicating that RAILS can
defend stronger attacks.

We then conduct experiments with Square Attack, which
is one of the black-box attacks. The results are provided in
Table 7 and show that RAILS improves the robust accuracy
of DkNN by 3% on CIFAR-10 with ε = 20 and ε = 24.

TABLE 13. Default parameter for RAILS. For each parameter of interest
all other parameters are set to the default values listed in this table.

TABLE 14. Increasing the N neighbors within a certain range yields
improved standard accuracy (SA) and robust accuracy (RA). We hold the
population size as a fixed N neighbor value (it’s minimum possible
value). Note that both the standard and robust accuracy improve as the
number of neighbors is increased. This may suggest that performance is
influenced by the ‘depth‘ of the class-conditional selection of benign
examples.

C. DETAILS ON RAILS ABLATION STUDY
For this subsection, RAILS is trained on CIFAR-10 with
VGG16 as the classifier. Results are evaluated using model
classification accuracy. Accuracy is compared before and
after a projected gradient descent (PGD) attack on the training
data with ε = 8/255. The baseline model performance
for benign data (standard accuracy) was 87.26%. After the
training data was adversarially attacked the VGG16 accuracy
(robust accuracy) fell to 32.57%. By implementing RAILS,
we are able to achieve an robust accuracy of 54.3% using the
parameterization described in Table 13. All the experiments
are conducted on convolutional layer 3. Each experiment

TABLE 15. Increasing population size improves robustness when N is
small, and does not yield significant improvement when N is large with
low mutation magnitude and low mutation probability. We present an
increased population coefficient κ , where the population T equals
κ ×(N neighbors). We present two cases: where N neighbors is small and
where N neighbors is large. Small N : Increasing κ from one to two
improves the robustness. However, further increasing κ does not bring
significant improvement. Large N : Note that population size does not
have an apparent impact on either standard or robust accuracy when N
neighbors is large. This may suggest that the number of perturbed input
‘exemplars‘ does not lead to more robust accuracy on adversarial inputs
without sufficient mutation. This is consistent with the core principal in
the adaptive immune system that mutation is necessary to converge on
optimal solutions.

TABLE 16. Increasing mutation upper bound within a small value
window increases robustness. We observe that over several experiments
mutation range has a narrow window where it positively impacts both
standard accuracy (SA) and robust accuracy (RA). This may suggest that
this parameter is an important hyper-parameter to tune during training.

TABLE 17. Crossover is an important mechanism for improving
performance. We observe better performance when we use cross-over as
opposed to mutation alone during training. We also note that population
size alone does not necessarily contribute to better performance for
either strategy.

holds these parameters fixed while exploring a range of val-
ues over independent training regimes. Both standard and
robust accuracy are compared for each parameter choice. The
purpose of this section is to investigate RAILS’ sensitivity
towards parameter choices. Details for each experiment are
listed in the table captions.
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