TIANQI CHEN

Phone: (734)-882-3951 \$\diamole\$ Email: tqch@utexas.edu \$\diamole\$ Homepage: tqch.github.io

EDUCATION

University of Texas, Austin

September 2021 - (estimated) May 2026

Ph.D. in Statistics

University of Michigan, Ann Arbor

September 2019 - May 2021

M.S. in Applied Statistics

Fudan University

September 2015 - June 2019

B.S. in Applied Mathematics

PUBLICATIONS

Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling Chen, T. and Zhou, M.

[Paper] [Code] ICML, 2023

ASK: Adversarial Soft k-Nearest Neighbor Attack and Defense

RAILS: A Robust Adversarial Immune-inspired Learning System

[Paper] [Code] IEEE Access, 2022

Wang, R., Chen, T., Yao, P., Liu, S., Rajapakse, I. and Hero, A.

[D 1] [C 1]

Wang, R., Chen, T., ..., Rajapakse, I. and Hero, A.

[Paper] [Code] IEEE Access, 2022

Immuno-mimetic Deep Neural Networks (Immuno-Net)

[Paper]

Wang, R., Chen, T., ..., Rajapakse, I. and Hero, A.

2021 ICML Workshop on Comp. Bio.

PROJECTS

Jump-based Deep Generative Modeling

March 2023 - June 2023

- Studied non-Gaussian-based iterative data corruption and recovery processes from Bregman divergence perspective;
- Proposed a binomial/Poisson-based hierarchical variational autoencoding framework that are well suited for modeling non-standard non-negative distributions that exhibits sparsity, skewedness, heavy-tailedness and/or heterogeneity.

Diffusion-based Deep Generative Modeling [Code]

June 2022 - February 2023

• Built the codebase of denoising diffusion models including DDPM, DDIM sampler and classifier-free guidance in PyTorch and reproduced the experiment results in the papers.

GARD: Guaranteeing AI Robustness Against Deception Research Affiliate

July 2020 - May 2022 University of Michigan

- We first introduced an information-theoretic surrogate loss for DkNN-based classification, based upon which we then proposed an attack algorithm and a defense algorithm that achieved SOTA adversarial results on DkNN-based models;
- We proposed an immune-inspired adversarial framework that can defend against unseen attacks by mimicking the immune response of B-cells.

FELLOWSHIPS AND AWARDS

${ m UT~Pr}$	ofessional Development Award	2023
McCo	mbs Dean's Fellowship	2022
Gradu	ate School Recruitment Fellowship	2021
Fudan	University Excellent Freshman Scholarship (Top 1%)	2015

TECHNICAL STRENGTHS

Programming Languages

Python, R

Machine Learning / Deep Learning APIs

PyTorch, Scikit-learn, SciPy, NumPy